Smartphones have become the most important application for high-performance, energy-efficient processors (see "ARM's 2015 Mid-Range Platform Prep: A 32-Bit Next-Step" in this month's edition of InsideDSP). That's because smartphones are a huge and growing business, and processors make a big difference in how smartphones perform – and how long their batteries last. As a result, interest has been growing in smartphone processor performance, and there's been quite a bit of benchmarking activity.
Read more...
Let’s face it: Applications are getting more complicated. Chips are getting more complicated. And engineering teams are generally getting smaller, not larger. As a result, it’s incumbent on chip vendors to provide robust, easy-to-use development kits. Design engineers rely on these kits to quickly evaluate chips and prototype key portions of their systems.
Clearly chip manufacturers recognize that development kits are important, and there are hundreds available. But the quality of these
Read more...
Toward the end of an article published in the February 2013 edition of InsideDSP, analyzing BDTI's published benchmark results of Qualcomm's QDSP6 (aka "Hexagon") v4 DSP core, you'll find the following prescient quote:
Qualcomm is, of course, not done innovating with Hexagon. The June 2012 InsideDSP article uncovered evidence of an upcoming QDSP6 v5, which the company officially unveiled at the Consumer Electronics Show last month within its newest Snapdragon 800 Series SoCs. QDSP V5 expands
Read more...
In January 2013, InsideDSP covered the CEVA-MM3101, the company's first DSP core targeted not only at still and video image encoding and decoding tasks (akin to the prior-generation MM2000 and MM3000) but also at a variety of image and vision processing tasks. At that time, the company published the following table of MM3101 functions that it provides to its licensees (Table 1):
Table 1. The initial extensive software function library unveiled in conjunction with the CEVA-MM3101 introduction
Read more...
Recently I heard a presentation from a start-up chip supplier promoting a new type of programmable architecture for baseband processing in cellular base stations and handsets. The company's CEO contended that digital signal processors (DSPs) are becoming passé, soon to be replaced by more modern architectures. This caused me to think about the future of DSPs.
Industry pundits have been heralding the death of DSPs for over a decade. And there's some evidence to support their view. For example
Read more...
The tension between cost and quality is one of the fundamental tradeoffs in the design of consumer electronics devices—and many other systems. Customers predominantly select among competing products based on price, especially in these challenging economic times, but consumers are also unwilling to short-change perceived quality. For example, to minimize bill-of-materials costs, engineers prefer to incorporate low-cost speakers in their designs. These entry-level transducers typically exhibit
Read more...
The cellular base station and its associated infrastructure topology have remained largely unchanged throughout the industry's history to date, although upgrades have periodically occurred to address the needs of evolving voice and data standards. Within each base station are beefy application-tailored, highly integrated DSPs from companies such as CEVA, Freescale, LSI, and Texas Instruments, all of which are regularly covered in InsideDSP. A beefy “backhaul” tether connects each base station
Read more...
Vision science studies suggest that the eye is able to discern more than 11 bits of dynamic range for each of the three primary colors – red, green and blue – that typically comprise a given scene. The optical nerve connecting each eye to the brain, on the other hand, is only able to pass roughly five bits' (40 levels) worth of each primary color's data. Yet the brain still is capable of discerning more than 10 billion discrete levels of total color depth, equivalent to that of the 11-bit-per-
Read more...
In my December column, I observed that smartphones and tablets are starting to be used in places where purpose-built embedded systems once reigned, such as point-of sale terminals. At home, for example, I have a small Android tablet that I use as an Internet audio player. And my local sandwich shop uses iPads as self-service ordering and payment terminals.
When I first began thinking about this phenomenon approximately a year ago, I thought it was an interesting trend that might someday become
Read more...
BDTI is well known for its software-related capabilities: performance- and power consumption-related benchmarking, for example, along with algorithm evaluation, and development and optimization work. But the company is no stranger to hardware, either. Take, for example, its recent testing of DSP functions implemented in Altera FPGAs, or its successful effort to quantify the power draw of audio processing algorithms running on tablet computers. Or take this month's case study, which stems from a
Read more...