
Copyright © 2000 Berkeley Design Technology, Inc. PAGE 1 of 9

A B D T I W h i t e P a p e r

Berkeley Design Technology, Inc.
Insight • Analysis • Advice

on Signal Processing Technology

Introduction

The number and variety of products that include some
form of digital signal processing has grown dramatically
over the last five years. DSP has become a key component
in many consumer, communications, medical, and indus-
trial products. These products use a variety of hardware
approaches to implement DSP, ranging from the use of
off-the-shelf microprocessors to field-programmable gate
arrays (FPGAs) to custom integrated circuits (ICs). Pro-
grammable “DSP processors,” a class of microprocessors
optimized for DSP, are a popular solution for several rea-
sons. In comparison to fixed-function solutions, they have
the advantage of potentially being reprogrammed in the
field, allowing product upgrades or fixes. They are often
more cost-effective (and less risky) than custom hard-
ware, particularly for low-volume applications, where the
development cost of custom ICs may be prohibitive. And
in comparison to other types of microprocessors, DSP
processors often have an advantage in terms of speed,
cost, and energy efficiency.

In this article, we trace the evolution of DSP processors,
from early architectures to current state-of-the-art
devices. We highlight some of the key differences among
architectures, and compare their strengths and weak-
nesses. Finally, we discuss the growing class of general-
purpose processors that have been enhanced to address
the needs of DSP applications.

DSP Algorithms Mold DSP Architectures

From the outset, DSP processor architectures have been
molded by DSP algorithms. For nearly every feature
found in a DSP processor, there are associated DSP algo-
rithms whose computation is in some way eased by inclu-

sion of this feature. Therefore, perhaps the best way to
understand the evolution of DSP architectures is to exam-
ine typical DSP algorithms and identify how their compu-
tational requirements have influenced the architectures of
DSP processors. As a case study, we will consider one of
the most common signal processing algorithms, the FIR
filter.

Fast Multipliers

The FIR filter is mathematically expressed as , where
 is a vector of input data, and is a vector of filter coef-

ficients. For each “tap” of the filter, a data sample is mul-
tiplied by a filter coefficient, with the result added to a
running sum for all of the taps (for an introduction to DSP
concepts and filter theory, refer to [2]). Hence, the main
component of the FIR filter algorithm is a dot product:
multiply and add, multiply and add. These operations are
not unique to the FIR filter algorithm; in fact, multiplica-
tion (often combined with accumulation of products) is
one of the most common operations performed in signal
processing—convolution, IIR filtering, and Fourier trans-
forms also all involve heavy use of multiply-accumulate
operations.

Originally, microprocessors implemented multiplications
by a series of shift and add operations, each of which con-
sumed one or more clock cycles. In 1982, however, Texas
Instruments (TI) introduced the first commercially suc-
cessful “DSP processor,” the TMS32010, which incorpo-
rated specialized hardware to enable it to compute a
multiplication in a single clock cycle. As might be
expected, faster multiplication hardware yields faster per-
formance in many DSP algorithms, and for this reason all
modern DSP processors include at least one dedicated sin-
gle-cycle multiplier or combined multiply-accumulate
(MAC) unit [1].

Σxh
x h

The Evolution of DSP Processors
By Jennifer Eyre and Jeff Bier, Berkeley Design Technology, Inc. (BDTI)

(Note: A version of this white paper has appeared in IEEE Signal Processing Magazine)

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 2 of 9

Multiple Execution Units

DSP applications typically have very high computational
requirements in comparison to other types of computing
tasks, since they often must execute DSP algorithms (such
as FIR filtering) in real time on lengthy segments of sig-
nals sampled at 10-100 KHz or higher. Hence, DSP pro-
cessors often include several independent execution units
that are capable of operating in parallel—for example, in
addition to the MAC unit, they typically contain an arith-
metic-logic unit (ALU) and a shifter.

Efficient Memory Accesses

Executing a MAC in every clock cycle requires more than
just a single-cycle MAC unit. It also requires the ability to
fetch the MAC instruction, a data sample, and a filter
coefficient from memory in a single cycle. Hence, good
DSP performance requires high memory bandwidth—
higher than was supported on the general-purpose micro-
processors of the early 1980’s, which typically contained
a single bus connection to memory and could only make
one access per clock cycle. To address the need for
increased memory bandwidth, early DSP processors
developed different memory architectures that could sup-
port multiple memory accesses per cycle. The most com-
mon approach (still commonly used) was to use two or
more separate banks of memory, each of which was
accessed by its own bus and could be read or written dur-
ing every clock cycle. Often, instructions were stored in
one memory bank, while data was stored in another. With
this arrangement, the processor could fetch an instruction
and a data operand in parallel in every cycle. Figure 1
illustrates the difference in memory architectures for early
general-purpose processors and DSP processors. Since
many DSP algorithms (such as FIR filters) consume two
data operands per instruction (e.g., a data sample and a
coefficient), a further optimization commonly used is to
include a small bank of RAM near the processor core that
is used as an instruction cache. When a small group of
instructions is executed repeatedly (i.e., in a loop), the
cache is loaded with those instructions, freeing the
instruction bus to be used for data fetches instead of
instruction fetches—thus enabling the processor to exe-
cute a MAC in a single cycle.

High memory bandwidth requirements are often further
supported via dedicated hardware for calculating memory
addresses. These address generation units operate in par-
allel with the DSP processor’s main execution units,
enabling it to access data at new locations in memory (for
example, stepping through a vector of coefficients) with-
out pausing to calculate the new address.

Memory accesses in DSP algorithms tend to exhibit very
predictable patterns; for example, for each sample in an
FIR filter, the filter coefficients are accessed sequentially
from start to finish for each sample, then accesses start
over from the beginning of the coefficient vector when
processing the next input sample. This is in contrast to
other types of computing tasks, such as database process-
ing, where accesses to memory are less predictable. DSP
processor address generation units take advantage of this
predictability by supporting specialized addressing modes
that enable the processor to efficiently access data in the
patterns commonly found in DSP algorithms. The most
common of these modes is register-indirect addressing
with post-increment, which is used to automatically incre-
ment the address pointer for algorithms where repetitive
computations are performed on a series of data stored
sequentially in memory. Without this feature, the pro-
grammer would need to spend instructions explicitly
incrementing the address pointer. Many DSP processors
also support “circular addressing,” which allows the pro-
cessor to access a block of data sequentially and then auto-
matically wrap around to the beginning address—exactly
the pattern used to access coefficients in FIR filtering. Cir-
cular addressing is also very helpful in implementing
first-in, first-out buffers, commonly used for I/O and for
FIR filter delay lines.

Data Format

Most DSP processors use a fixed-point numeric data type
instead of the floating-point format most commonly used
in scientific applications. In a fixed-point format, the
binary point (analogous to the decimal point in base 10
math) is located at a fixed location in the data word. This
is in contrast to floating-point formats, in which numbers
are expressed using an exponent and a mantissa; the
binary point essentially “floats” based on the value of the
exponent. Floating-point formats allow a much wider
range of values to be represented, and virtually eliminate
the hazard of numeric overflow in most applications. DSP
applications typically must pay careful attention to
numeric fidelity (e.g., avoiding overflow). Since numeric

Figure 1. Differences in memory architecture for early
general-purpose microprocessors vs. early DSP processors.

Program
Memory

Data
Memory

DSP
Processor

Core

Bus

Bus

Program/
Data

Memory

General-
Purpose

Processor
Core

Bus

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 3 of 9

fidelity is far more easily maintained using a floating-
point format, it may seem surprising that most DSP pro-
cessors use a fixed-point format. In many applications,
however, DSP processors face additional constraints: they
must be inexpensive and provide good energy efficiency.
Fixed-point processors tend to be cheaper and less power-
hungry than floating-point processors at comparable
speeds, because floating-point formats require more com-
plex hardware to implement. For these reasons, there are
few floating-point DSP processors.

Sensitivity to cost and energy consumption also influ-
ences the data word width used in DSP processors. DSP
processors tend to use the shortest data word that will pro-
vide adequate accuracy in their target applications. Most
fixed-point DSP processors use 16-bit data words,
because that data word width is sufficient for many DSP
applications. A few fixed-point DSP processors use 20,
24, or even 32 bits to enable better accuracy in applica-
tions that are difficult to implement well with 16-bit data,
such as high-fidelity audio processing.

To ensure adequate signal quality while using fixed-point
data, DSP processors typically include specialized hard-
ware to help programmers maintain numeric fidelity
throughout a series of computations. For example, most
DSP processors include one or more “accumulator” regis-
ters to hold the results of summing several multiplication
products. Accumulator registers are typically wider than
other registers; they often provide extra bits, called “guard
bits,” to extend the range of values that can be represented
and thus avoid overflow. In addition, DSP processors usu-
ally include good support for saturation arithmetic, round-
ing, and shifting, all of which are useful for maintaining
numeric fidelity.

Zero-Overhead Looping

DSP algorithms typically spend the vast majority of their
processing time in relatively small sections of software
that are executed repeatedly; i.e., in loops. Hence, most
DSP processors provide special support for efficient loop-
ing. Often, a special loop or repeat instruction is provided
which allows the programmer to implement a for-next
loop without expending any clock cycles for updating and
testing the loop counter or branching back to the top of the
loop. This feature is often referred to as “zero-overhead
looping.”

Streamlined I/O

Finally, to allow low-cost, high-performance input and
output, most DSP processors incorporate one or more spe-

cialized serial or parallel I/O interfaces, and streamlined
I/O handling mechanisms, such as low-overhead inter-
rupts and direct memory access (DMA), to allow data
transfers to proceed with little or no intervention from the
processor's computational units.

Specialized Instruction Sets

DSP processor instruction sets have traditionally been
designed with two goals in mind. The first is to make max-
imum use of the processor's underlying hardware, thus
increasing efficiency. The second goal is to minimize the
amount of memory space required to store DSP programs,
since DSP applications are often quite cost-sensitive and
the cost of memory contributes substantially to overall
chip and/or system cost. To accomplish the first goal, con-
ventional DSP processor instruction sets generally allow
the programmer to specify several parallel operations in a
single instruction, typically including one or two data
fetches from memory (along with address pointer
updates) in parallel with the main arithmetic opera-
tion.With the second goal in mind, instructions are kept
short (thus using less program memory) by restricting
which registers can be used with which operations, and
restricting which operations can be combined in an
instruction. To further reduce the number of bits required
to encode instructions, DSP processors often offer fewer
registers than other types of processors, and may use
mode bits to control some features of processor operation
(for example, rounding or saturation) rather than encoding
this information as part of the instructions. The overall
result of this approach is that conventional DSP proces-
sors tend to have highly specialized, complicated, and
irregular instruction sets. This characteristic has come to
be viewed as a significant drawback for these processors,
because it complicates the task of creating efficient
assembly language software—whether by a programmer
or by a compiler. Why is this important?

Programmers who write software for PC processors, such
as Pentiums or PowerPCs, typically don't have to worry
much about the ease of use of the processor's instruction
set, because they generally develop programs in a high-
level language, such as C or C++. Life isn't quite so simple
for the DSP processor programmer, because high-volume
DSP applications, unlike other types of applications, are
often written (or at least have portions optimized) in
assembly language.

There are two main reasons why DSPs aren't usually pro-
grammed in high-level languages. The first is that most
widely used high-level languages, such as C, are not well-

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 4 of 9

suited for describing typical DSP algorithms. The second
reason is that conventional DSP architectures, with their
multiple memory spaces, multiple buses, irregular
instruction sets, and highly specialized hardware, are dif-
ficult for compilers to use effectively. It is certainly true
that a compiler can take C source code and generate
assembly code for a DSP, but to get efficient code, the pro-
grammer often must hand-optimize the critical sections of
the program in assembly language. DSP applications typ-
ically have very high computational demands coupled
with strict cost constraints, making program optimization
essential. For these reasons, programmers often consider
the palatability (or lack thereof) of the instruction set of a
DSP processor as a key aspect of its overall desirability.

The Current DSP Landscape

Conventional DSP Processors

The performance and price range among DSP processors
is very wide. In the low-cost, low-performance range are
the industry workhorses, which are based on conventional
DSP architectures. These processors are quite similar
architecturally to the original DSP processors of the early
1980s. They issue and execute one instruction per clock
cycle, and use the complex, multi-operation type of
instructions described earlier. These processors typically
include a single multiplier or MAC unit and an ALU, but
few additional execution units, if any. Included in this

group are Analog Devices' ADSP-21xx family, Texas
Instruments' TMS320C2xx family, and Motorola's
DSP560xx family. These processors generally operate at
around 20-50 MHz, and provide good DSP performance
while maintaining very modest power consumption and
memory usage. They are typically used in consumer and
telecommunications products that have modest DSP per-
formance requirements and stringent cost and/or energy
consumption constraints, like disk drives and digital tele-
phone answering machines.

Midrange DSP processors achieve higher performance
than the low-cost DSPs described above through a combi-
nation of increased clock speeds and somewhat more
sophisticated architectures. DSP processors like the
Motorola DSP563xx and Texas Instruments
TMS320C54x operate at 100-150 MHz and often include
a modest amount of additional hardware, such as a barrel
shifter or instruction cache, to improve performance in
common DSP algorithms. Processors in this class also
tend to have deeper pipelines than their lower-perfor-
mance cousins. (Pipelining is a hardware technique for
overlapping the execution of portions of several instruc-
tions to improve instruction throughput, [4].) These dif-
ferences notwithstanding, however, midrange DSP
processors are more similar to their predecessors than
they are different; architectural improvements are mostly
incremental rather than dramatic. Hence, this group of
DSP processors can still be classified as having conven-
tional architectures. By using this approach, midrange

X Data Bus (16)

16x16
Multiplier

Bit Manipulation Unit
(Optional)

ALU

Two Accumulators

I Data Bus (16)

Figure 2a. Lucent DSP16xx (conventional DSP processor).

X Data Bus (32)

16x16
Multiplier

AdderALU

Eight Accumulators

I Data Bus (32)

Bit Manipulation Unit

16x16
Multiplier

Figure 2b. Lucent DSP16xxx (enhanced conventional DSP
processor).

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 5 of 9

DSP processors are able to achieve noticeably better per-
formance while keeping energy and power consumption
low. Processors in this performance range are typically
used in wireless telecommunications applications and
high-speed modems, which have relatively high computa-
tional demands but often require low power consumption.

Enhanced-Conventional DSP Processors

DSP processor architects who want to improve perfor-
mance beyond the gains afforded by faster clock speeds
and modest hardware improvements must find a way to
get significantly more useful DSP work out of every clock
cycle. One approach is to extend conventional DSP archi-
tectures by adding parallel execution units, typically a
second multiplier and adder. These hardware enhance-
ments are combined with an extended instruction set that
takes advantage of the additional hardware by allowing
more operations to be encoded in a single instruction and
executed in parallel. We refer to this type of processor as
an “enhanced-conventional DSP processor,” because it is
based on the conventional DSP processor architectural
style rather than being an entirely new approach. With this
increased parallelism, enhanced-conventional DSP pro-
cessors can execute significantly more work per clock
cycle—for example, two MACs per cycle instead of one.
Figures 2a and 2b compare the execution units and buses
of a conventional DSP (the Lucent Technologies
DSP16xx) to an enhanced-conventional DSP that extends
the DSP16xx architecture (the Lucent Technologies
DSP16xxx)

Enhanced-conventional DSP processors typically have
wider data buses to allow them to retrieve more data
words per clock cycle in order to keep the additional exe-
cution units fed. They may also use wider instruction
words to accommodate specification of additional parallel
operations within a single instruction. Increases in cost
and power consumption due to the additional hardware
and architectural complexity are largely offset by
increased performance (and, in some cases, by the use of
more advanced fabrication processes), allowing these pro-
cessors to maintain cost-performance and energy con-
sumption similar to those of previous generations of
DSPs.

Multi-Issue Architectures

Enhanced-conventional DSP processors provide
improved performance by allowing more operations to be
encoded in every instruction, but because they follow the
trend of using specialized hardware and complex, com-
pound instructions, they suffer from some of the same

problems as conventional DSPs: they are difficult to pro-
gram in assembly language and they are unfriendly com-
piler targets. With the goals of achieving high
performance and creating an architecture that lends itself
to the use of compilers, some newer DSP processors use a
“multi-issue” approach. In contrast to conventional and
enhanced-conventional processors, multi-issue proces-
sors use very simple instructions that typically encode a
single operation. These processors achieve a high level of
parallelism by issuing and executing instructions in paral-
lel groups rather than one at a time. Using simple instruc-
tions simplifies instruction decoding and execution,
allowing multi-issue processors to execute at higher clock
rates than conventional or enhanced conventional DSP
processors.

TI was the first DSP processor vendor to use this approach
in a commercial DSP processor. TI's multi-issue
TMS320C62xx, introduced in 1996, was dramatically
faster than any other DSP processor available at the time.
Other vendors have since followed suit, and now all four
of the major DSP processor vendors (TI, Analog Devices,
Motorola, and Lucent Technologies) are employing multi-
issue architectures for their latest high-performance pro-
cessors. The two classes of architectures that execute mul-
tiple instructions in parallel are referred to as VLIW (very
long instruction word) and superscalar. These architec-
tures are quite similar, differing mainly in how instruc-
tions are grouped for parallel execution. With one
exception, all current multi-issue DSP processors use the
VLIW approach.

VLIW and superscalar architectures provide many execu-
tion units (many more than are found on conventional or
even enhanced conventional DSPs) each of which exe-
cutes its own instruction. Figure 3 illustrates the execution
units and buses of the TMS320C62xx, which contains
eight independent execution units. VLIW DSP processors
typically issue a maximum of between four and eight
instructions per clock cycle, which are fetched and issued
as part of one long super-instruction—hence the name
“very long instruction word.” Superscalar processors typ-
ically issue and execute fewer instructions per cycle, usu-
ally between two and four.

In a VLIW architecture, the assembly language program-
mer (or code-generation tool) specifies which instructions
will be executed in parallel. Hence, instructions are
grouped at the time the program is assembled, and the
grouping does not change during program execution.
Superscalar processors, in contrast, contain specialized
hardware that determines which instructions will be exe-

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 6 of 9

cuted in parallel based on data dependencies and resource
contention, shifting the burden of scheduling parallel
instructions from the programmer to the processor. The
processor may group the same set of instructions differ-
ently at different times in the program's execution; for
example, it may group instructions one way the first time
it executes a loop, then group them differently for subse-
quent iterations. The difference in the way these two types
of architectures schedule instructions for parallel execu-
tion is important in the context of using them in real-time
DSP applications.

Because superscalar processors dynamically schedule
parallel operations, it may be difficult for the programmer
to predict exactly how long a given segment of software
will take to execute. The execution time may vary based
on the particular data accessed, whether the processor is
executing a loop for the first time or the third, or whether
it has just finished processing an interrupt, for example.
This uncertainty in execution times can pose a problem
for DSP software developers who need to guarantee that
real-time application constraints will be met in every case.
Measuring the execution time on hardware doesn't solve
the problem, since the execution time is often variable.
Determining the worst-case timing requirements and
using them to ensure that real-time deadlines are met is
another approach, but this tends to leave much of the pro-
cessor's speed untapped. Dynamic features also compli-
cate software optimization. As a rule, DSP processors
have traditionally avoided dynamic features (such as
superscalar execution and dynamically loaded caches) for
just these reasons; this may be why there is currently only

one example of a commercially available superscalar DSP
processor.

Although their instructions are very simple and typically
encode only one operation, most current VLIW proces-
sors use wider instruction words than conventional DSP
processors—for example, 32 bits instead of 16. (Because
there is only one current example of a commercial super-
scalar DSP, it is difficult to generalize about this class of
architecture.) There are a number of reasons for using a
wider instruction word. In VLIW architectures, a wide
instruction word may be required in order to specify infor-
mation about which functional unit will execute the
instruction. Wider instructions allow the use of larger,
more uniform register sets (rather than the small sets of
specialized registers common among conventional DSP
processors), which in turn enables higher performance.
Relatedly, the use of wide instructions allows a higher
degree of consistency and regularity in the instruction set.
These instructions have few restrictions on register usage
and addressing modes, making VLIW processors better
compiler targets (and easier to program in assembly lan-
guage). There are disadvantages, however, to using wide,
simple instructions. Since each VLIW instruction is sim-
pler than a conventional DSP processor instruction,
VLIW processors tend to require many more instructions
to perform a given task. Combined with the fact that the
instruction words are typically wider than those found on
conventional DSP processors, this characteristic results in
relatively high program memory usage. High program
memory usage, in turn, may result in higher chip or sys-
tem cost because of the need for additional ROM or RAM.

When a processor issues multiple instructions per cycle, it
must be able to determine which execution unit will pro-
cess each instruction. Traditionally, VLIW processors
have used the position of each instruction within the
super-instruction to determine to where the instruction
will be routed. Some recent VLIW architectures do not
use positional super-instructions, however, and instead
include routing information within each sub-instruction.

To support execution of multiple parallel instructions,
VLIW and superscalar processors must have sufficient
instruction decoders, buses, registers, and memory band-
width. VLIW processors typically use either wide buses
or a large number of buses to access data memory and
keep the multiple execution units fed with data.

The architectures of VLIW DSP processors are in some
ways more like those of general-purpose processors than
like those of the highly specialized conventional DSP

On-Chip Program Memory

32x8=256 bits
(8 Instructions)

Dispatch Unit

On-Chip Data Memory

Register File B

L2 S2 M2 D2

Register File A

L1 S1 M1 D1

32 32 Key
L: ALU
S: Shifter, ALU
M: Multiplier
D: Address gen.

Figure 3. TMS320C62xx execution units and memory
architecture. The TMS320C62xx has eight execution units,
grouped in two sets of four.

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 7 of 9

architectures. VLIW DSP processors often omit some of
the features that were, until recently, considered virtually
part of the definition of a “DSP processor.” For example,
the TMS320C62xx does not include zero-overhead loop-
ing instructions; it requires the processor to explicitly per-
form the operations associated with maintaining a loop.
This does not necessarily result in a loss of performance,
however, since VLIW-based processors are able to exe-
cute many instructions in parallel. The operations needed
to maintain a loop, for example, can be executed in paral-
lel with several arithmetic computations, achieving the
same effect as if the processor had dedicated looping
hardware operating in the background.

The advantage of the multi-issue approach is a quantum
increase in speed with a simpler, more regular architecture
and instruction set that lends itself to efficient compiler
code generation.

VLIW and superscalar processors often suffer from high
energy consumption relative to conventional DSP proces-
sors, however in general, multi-issue processors are
designed with an emphasis on increased speed rather than
energy efficiency. These processors often have more exe-
cution units active in parallel than conventional DSP pro-
cessors, and they require wide on-chip buses and memory
banks to accommodate multiple parallel instructions and
to keep the multiple execution units supplied with data, all
of which contribute to increased energy consumption.

Because they often have high memory usage and energy
consumption, VLIW and superscalar processors have
mainly targeted applications which have very demanding
computational requirements but are not very sensitive to
cost or energy efficiency. For example, a VLIW processor
might be used in a cellular base station, but not in a porta-
ble cellular phone. One notable exception is the recently
announced VLIW architecture from Lucent's and Motor-
ola's StarCore partnership, the SC140, which is expected
to have sufficiently low energy consumption to enable its
use in portable products.

SIMD

SIMD, or single-instruction, multiple-data, is not a class
of architecture itself, but is instead an architectural tech-
nique that can be used within any of the classes of archi-
tectures we have described so far. SIMD improves
performance on some algorithms by allowing the proces-
sor to execute multiple instances of the same operation in
parallel using different data. For example, a SIMD multi-
plication instruction could perform two or more multipli-

cations on different sets of input operands in parallel in a
single clock cycle. This technique can greatly increase the
rate of computation for some vector operations that are
heavily used in multimedia and signal processing applica-
tions.

On DSP processors with SIMD capabilities, the underly-
ing hardware that supports SIMD operations varies
widely. Analog Devices, for example, modified their basic
conventional floating-point DSP architecture, the ADSP-
2106x, by adding a second set of execution units that
exactly duplicate the original set. The new architecture is
called the ADSP-2116x. Each set of execution units in the
ADSP-2116x includes a MAC unit, ALU, and shifter, and
each has its own set of operand registers. The augmented
architecture can issue a single instruction and execute it in
parallel in both sets of execution units using different
data-effectively doubling performance in some algo-
rithms.

In contrast, instead of having multiple sets of the same
execution units, some DSP processors can logically split
their execution units (e.g., ALUs or MAC units) into mul-
tiple sub-units that process narrower operands. These pro-
cessors treat operands in long (e.g., 32-bit) registers as
multiple short operands (e.g., as two 16-bit operands or
four 8-bit operands). Perhaps the most extensive SIMD
capabilities we have seen in a DSP processor to date are
found in Analog Devices' TigerSHARC processor. Tiger-
SHARC is a VLIW architecture, and combines the two
types of SIMD: one instruction can control execution of
the processor's two sets of execution units, and this
instruction can specify a split-execution-unit (e.g., split-
ALU or split-MAC) operation that will be executed in
each set. Using this hierarchical SIMD capability, Tiger-
SHARC can execute eight 16-bit multiplications per
cycle, for example. Figure 4 illustrates TigerSHARCs
SIMD capabilities.

Making effective use of processors' SIMD capabilities can
require significant effort on the part of the programmer.
Programmers often must arrange data in memory so that
SIMD processing can proceed at full speed (e.g., arrang-
ing data so that it can be retrieved in groups of four oper-
ands at a time) and they may also have to re-organize
algorithms to make maximum use of the processor's
resources. SIMD is only effective in algorithms that can
process data in parallel; for algorithms that are inherently
serial (for example, algorithms that use the result of one
operation as an input to the next operation), SIMD is gen-
erally not of use.

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 8 of 9

Alternatives to DSP Processors

High-Performance CPUs

Many high-end CPUs, such as Pentiums and PowerPCs,
have been enhanced to increase the speed of computations
associated with signal processing tasks. The most com-
mon modification is the addition of SIMD-based instruc-
tion-set extensions, such as MMX and SSE for the
Pentium, and AltiVec for the PowerPC. This approach is
a good one for CPUs, which typically have wide resources
(buses, registers, ALUs) which can be treated as multiple
smaller resources to increase performance. For example,
a CPU with a 64-bit data bus, 64-bit registers, and a 64-bit
ALU can be treated as having four times as many 16-bit
data buses, registers, and ALUs-resulting in up to four
times the performance on 16-bit data (the data size most
often used in DSP). Image processing, which tends to be
based on 8-bit data, can be sped up even further. Using
this approach, general-purpose processors are often able
to achieve performance on DSP algorithms that is better
than that of even the fastest DSP processors. This surpris-
ing result is partly due to the effectiveness of SIMD, but
also because many CPUs operate at extremely high clock
speeds in comparison to DSP processors; high-perfor-
mance CPUs typically operate at upwards of 500 MHz,
while the fastest DSP processors are in the 200-250 MHz
range. Given this speed advantage, the question naturally
arises, “Why use a DSP processor at all?”

There are a number of reasons why DSP processors are
still the solution of choice for many applications.
Although other types of processors may provide similar
(or better) speed, DSP processors often provide the best
mixture of performance, power consumption, and price.
Another key advantage is the availability of DSP-specific
development tools and off-the-shelf DSP software com-

ponents. And for real-time applications, the superscalar
architectures and dynamic features common among high-
performance CPUs can be problematic.

DSP/Microcontroller Hybrids

There are many lower-cost general-purpose processors,
referred to as “microcontrollers,” that are designed to exe-
cute control-oriented (decision-making) tasks efficiently.
These processors are often used in control applications
where the computational requirements are modest but
where factors that influence product cost and time-to-mar-
ket, such as low program memory use and the availability
of efficient compilers, are important.

 Many applications require a mixture of control-oriented
software and DSP software. An example is the digital cel-
lular phone, which must implement both supervisory
tasks and voice-processing tasks. In general, microcon-
trollers provide good performance in controller tasks and
poor performance in DSP tasks; DSP processors have the
opposite characteristics. Hence, until recently, combina-
tion control/signal processing applications were typically
implemented using two separate processors: a microcon-
troller and a DSP processor. In recent years, however, a
number of microcontroller vendors have begun to offer
DSP-enhanced versions of their microcontrollers as an
alternative to the dual-processor solution. Using a single
processor to implement both types of software is attrac-
tive, because it can potentially:

• simplify the design task

• save circuit board space

• reduce total power consumption

• reduce overall system cost

Microcontroller vendors such as Hitachi, ARM, and
Lexra have taken a number of different approaches to add-
ing DSP functionality to existing microprocessor designs,
borrowing and adapting the architectural features com-
mon among DSP processors. Many of these hybrid pro-
cessors achieve signal processing performance that is
comparable to that of low-cost or mid-range DSP proces-
sors while allowing re-use of software written for the orig-
inal microcontroller architecture.

SIMD MAC Instruction

ALU Shift ALU ShiftMAC MAC

Four 16-bit x 16-bit
multiplications

Four 16-bit x 16-bit
multiplications

Figure 4. TigerSHARC’s hierarchical SIMD capabilities.
TigerSHARC has six execution units, grouped in two sets of
three.

Copyright © 2000 Berkeley Design Technology, Inc. PAGE 9 of 9

Conclusions

DSP processor architectures are evolving to meet the
changing needs of DSP applications. The architectural
homogeneity that prevailed during the first decade of
commercial DSP processors has given way to rich diver-
sity. Some of the forces driving the evolution of DSP pro-
cessors today include the perennial push for increased
speed, decreased energy consumption, decreased memory
usage, and decreased cost, all of which enable DSP pro-
cessors to better meet the needs of new and existing appli-
cations. Of increasing influence is the need for
architectures that facilitate development of more efficient
compilers, allowing DSP applications to be written prima-
rily in high-level languages. This has become a focal point
in the design of new DSP processors, because DSP appli-
cations are growing too large to comfortably implement
(and maintain) in assembly language. As the needs of DSP
applications continue to change, we expect to see a con-
tinuing evolution in DSP processors.

References

[1] Lapsley et. al, “DSP Processor Fundamentals: Archi-
tectures and Features,” IEEE Press, 1996.

[2] R. G. Lyons, “Understanding Digital Signal Process-
ing,” Addison Wesley, 1996.

[3] W. Strauss, “DSP Strategies 2000,” Forward Con-
cepts, 1999.

[4] J. L. Hennessy and D. A. Patterson, “Computer
Architecture a Quantitative Approach,” Morgan
Kaufman, 1996.

[5] Berkeley Design Technology, Inc., “Buyer’s Guide
to DSP Processors,” Berkeley Design Technology,
Inc., 1994, 1995, 1997, 1999.

About the Authors

Jennifer Eyre is a DSP Analyst at Berkeley Design Tech-
nology, Inc. (BDTI). She is author or co-author of numer-
ous reports and articles on DSP processors, including
“Inside the StarCore SC140.” Eyre received her BSEE
and MSEE degrees from UCLA.

Jeff Bier is a co-founder and General Manager of BDTI.
Bier received engineering degrees from Princeton and
U.C. Berkeley. He is a member of the IEEE Design and
Implementation of Signal Processing Systems (DISPS)
technical committee.

BERKELEY DESIGN TECHNOLOGY, INC.
2107 Dwight Way, Second Floor

Berkeley, CA 94704 USA
(510) 665-1600

email: info@BDTI.com

EUROPE JAPAN
Cornelius Kellerhoff

International Representatives

Technology Products
Dusseldorf, Germany

 +49 (211) 467 998
Fax: +49 (211) 467 999

niels@BDTI.com

Shinichi Hosoya
Japan Kyastem Co

Tokyo, Japan
 +81 (425) 23 7176

Fax: +81 (425) 23 7178
bdt-info@kyastem.co.jp

http://www.BDTI.com

Fax: (510) 665-1680

