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Executive Summary

In 2009, Berkeley Design Technology Inc. (BDTI), an
independent benchmarking and analysis firm, launched
the BDTI High-Level Synthesis Tool Certification Pro-
gram™ to evaluate high-level synthesis tools for
FPGAs. Such tools take as their input a high-level repre-
sentation of an application (written in C or MATLAB, for
example) and generate a register-transfer-level (RTL)
implementation for an FPGA. Thus far, two high-level
synthesis tools, AutoESL’s AutoPilot and the Synopsys
Synphony C Compiler, have been certified under the
program. 

BDTI’s evaluation program uses two example appli-
cations, a video motion analysis application and a wireless
receiver, to evaluate high-level synthesis tools (HLSTs)
on a number of quantitative and qualitative metrics. As
shown in Figure 1 and Figure 2, we found that the Xilinx
Spartan-3A DSP 3400 FPGA used with either of the two

HLSTs provided roughly 40X better performance than a
mainstream DSP processor, and that the high-level syn-
thesis tools were able to achieve FPGA resource utiliza-
tion levels comparable to hand-written RTL code.
Furthermore, as we will discuss in this white paper,
implementing our video application using the HLSTs
along with Xilinx FPGA tools required a similar level of
effort as that required for the DSP processor. This find-
ing will no doubt be surprising to many, as FPGAs have
historically required much more development time than
DSPs.

Based on our analysis, we believe that HLSTs can sig-
nificantly increase the productivity of current FPGA
users. For those using DSP processors in highly demand-
ing applications, we believe that FPGAs used with
HLSTs are worthy of serious consideration.

FIGURE 1. Maximum frame rate achieved (at 720p resolution)
on the BDTI Optical Flow Workload (a video application) on a
DSP processor and a Spartan-3A DSP FPGA using HLSTs.
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FIGURE 2. FPGA resource utilization on the BDTI DQPSK
Workload (a wireless receiver) implemented using HLSTs
(average result) versus hand-written RTL code.
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In this paper, we describe the methodology underpin-
ning our evaluation, present selected results, and high-
light key advantages and limitations of high-level
synthesis tools as used with Xilinx FPGAs.

Background
Xilinx was founded in 1984 and has long been a dom-

inant provider of FPGAs. Current Xilinx FPGA families
include the high-performance Virtex-5 and Virtex-6 fam-
ilies, and the low-cost Spartan-3 and Spartan-6 families.
The company has been active in developing new FPGA
chips and tools, and in recent years has focused on creat-
ing application-domain-specific variants of its chips and
tools. In particular, Xilinx has developed a suite of “Tar-
geted Design Platforms” that are intended to help users
accelerate development in specific application areas. For
example, the video application used in this evaluation was
implemented on a Spartan-3A DSP FPGA using the
XtremeDSP Video Starter Kit — Spartan-3A DSP Edi-
tion, which is a Targeted Design Platform.

The shift to using FPGAs as processing engines is a
relatively new phenomenon. When FPGAs first became
commercially available, they lacked sufficient capacity to
be used as processing engines. Instead, they were used
for “glue logic” to facilitate interfacing among other
chips. But as their capacity has grown and their architec-
tures have incorporated specialized features such as mul-
tipliers and distributed memories, FPGAs have
increasingly found use as powerful parallel processing
engines. In 2007 BDTI published a ground-breaking
report, FPGAs for DSP, that included benchmark results
showing that FPGAs could achieve 100X higher perfor-
mance and 30X better cost-performance than DSP pro-
cessors in some highly parallelizable signal processing
applications—a dramatic advantage. Nevertheless, the
widespread adoption of FPGAs as processing engines
has been hampered by the challenges of using FPGAs.
Implementing an application in hand-coded RTL HDL
(hardware description language) code is typically far
more labor intensive and error prone than implementing
the application on a programmable processor, and
requires a very different skill set.

High-level synthesis tools take as their input a high-
level representation of desired functionality and generate
an RTL HDL description of a hardware implementation
targeting an FPGA or ASIC. HLSTs can easily extract
parallel circuit implementations from loops that have a
large number of operations with limited data dependen-
cies, and allow incorporation of concurrency into a
design while still working with a familiar high-level lan-
guage. Thus, high-level synthesis tools eliminate the step
of manually creating the RTL implementation. They can

also eliminate much of the effort in developing the test
benches needed to verify the RTL implementation. Fur-
thermore, much of the debugging and verification can be
performed at a high level rather than at the RTL code
level, which can significantly reduce debugging and veri-
fication time and effort.

For processor users seeking higher performance, a
key question is whether high-level synthesis tools can
make FPGA design more like processor software devel-
opment, in terms of productivity and skills requirements.
For current FPGA designers, the key question is whether
HLSTs deliver substantial improvements in productivity
without compromising the performance and efficiency
of the design.

The idea of high-level synthesis is often met with
skepticism. This is largely due to the common belief that
software tools cannot produce results as good as those
produced by a skilled engineer. Unfortunately, there are
plenty of examples of older high-level synthesis tools—
not to mention older software compilers for proces-
sors—that support this viewpoint.

However, there is a growing body of anecdotal evi-
dence suggesting that some modern high-level synthesis
tools are very effective, both in terms of usability and
quality of results. (See [1] for an excellent tutorial on the
history and evolution of high-level synthesis tools.)
Given this conflicting information, how is a prospective
user to judge whether high-level synthesis tools are worth
considering?

BDTI created the BDTI High-Level Synthesis Tool
Certification Program to provide objective, credible data
and analysis to enable potential users of high-level syn-
thesis tools for FPGAs to quickly understand the capa-
bilities and limitations of these tools.

This white paper explains the evaluation methodol-
ogy developed for this program and provides an over-
view of the results obtained from BDTI’s in-depth,
hands-on evaluation of two high-level synthesis tools—
AutoPilot from AutoESL, and the Synphony C Compiler
from Synopsys—used with a Xilinx FPGA and with Xil-
inx’s RTL tools. In this paper, we present representative
results for Xilinx FPGAs used in conjunction with the
two HLSTs evaluated thus far. Detailed results for these
tools are available on BDTI’s website, www.BDTI.com.

About BDTI
Berkeley Design Technology, Inc. (BDTI) is an inde-

pendent technology analysis, consulting, and engineering
services company headquartered in Oakland, California.
Founded in 1991, BDTI is widely known for its highly
regarded, independent performance analysis of process-
ing platforms for embedded applications. BDTI’s six
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suites of chip benchmarks have been licensed for use
with nearly 100 processing platforms, from MCUs to
FPGAs.

Unlike market research firms, BDTI is made up of
engineers with real-world design experience; the com-
pany’s analysis projects often involve extensive hands-on
work with chips, tools, and software. Engineers at BDTI
have significant expertise in algorithm and software
development for a range of processors, but are not expe-
rienced in FPGA design. As such, they approached this
project as FPGA novices, and are representative of other
DSP processor users who may be considering a switch to
FPGAs.

Further information about the company along with a
variety of analysis results are available at
www.BDTI.com.

Design Using High-Level Synthesis Tools
In this evaluation program, applications are imple-

mented on a Xilinx FPGA using the high-level synthesis
tools via two main steps: First, starting with a high-level
language description of the desired functionality, the
high-level synthesis tool is used to generate an RTL
implementation. Then, Xilinx’s RTL tools (the Inte-
grated Synthesis Environment, or ISE, and the Embed-
ded Development Kit, or EDK) are used to transform
that RTL implementation into a complete FPGA imple-
mentation in the form of a bitstream for programming a
specific FPGA on a specific hardware platform with I/O
and memory. (In our case, the platform is the Video
Starter Kit mentioned earlier.) The high-level synthesis
tools also generate a wrapper for the RTL implementa-
tion so that the result can be used as a core in the EDK
tools in combination with I/O and external memory. In
this paper we use the term “RTL tools” to refer to the
combination of the ISE and EDK tools. 

One could limit an evaluation of high-level synthesis
tools to the use of the synthesis tools alone, ignoring the
RTL-to-bitstream portion of the design flow. But poten-
tial users need to know how difficult (or easy) it is to get
from the high-level application description all the way to
an FPGA implementation—which requires the RTL
tools in addition to the high-level synthesis tool. For this
reason, BDTI evaluates the entire implementation pro-
cess, that is, not just the C-to-RTL portion, but also the

Xilinx RTL tool chain. The full implementation process
is shown in Figure 3.

FIGURE 3. Design flow using the AutoPilot or Synphony C
Compiler high-level synthesis tools in conjunction with Xilinx
RTL tools. (Figure based on a diagram provided by AutoESL.)

As illustrated in Figure 3, the first step in implement-
ing an application on any hardware target is often to
restructure the initial C code. By “restructuring,” we
mean rewriting the initial C code (which is typically coded
for clarity and ease of conceptual understanding rather
than for optimized performance) into a format more
suitable for the target processing engine. This typically
involves modifying the code such that the size of data
structures is correlated with the size of on-chip memories
and unnecessary data dependencies are removed, among
other changes.

On a DSP processor, for example, it may be appropri-
ate to rearrange an application’s control flow so that
intermediate data always fits in cache. On an FPGA with
high-level synthesis tools, restructuring typically provides
a representation of an application that allows the HLS
tools to extract potential parallelism, resulting in a
streaming pipelined implementation.

Restructuring can sometimes enable improvements
of several orders of magnitude in speed or resource utili-
zation. If the original C code is not appropriate for the
hardware target, restructuring may be required in order
to get the design to work in real time or to fit within the
available hardware resources. For example, a video appli-
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cation may pass frames of intermediate video data
between algorithm blocks. A straightforward C represen-
tation of the application may require large frame buffers
that would not fit in an FPGA, but the code can typically
be restructured to enable use of much smaller buffers. By
appropriately streaming the data flow between algorithm
kernels, the application can buffer just a few scan lines—
or even just a few pixels—rather than buffering entire
frames. In some cases, applications may require the use
of external memory (for example, if a video application
depends on values from previous frames, it must store
entire frames, which may not fit on the chip). In this case,
the restructuring process requires the addition of code
and interfaces that support the use of an external mem-
ory interface. The effort required for restructuring can
vary significantly, depending on the application, the
required performance, and the target platform.

In general, high-level synthesis tools do not handle
restructuring automatically. Instead, the restructuring is
done by hand. In fact, initial restructuring work tends to
be unrelated to the specifics of the high-level synthesis
tool, and can be done independently of the tool. (In our
evaluation, for example, we used Microsoft Visual Studio
for initial restructuring and verification of the C code.)
The high-level synthesis tool is then used to generate an
initial implementation, and further restructuring may
then be done based on the performance and resource use
of the initial implementation. Compared with hand-writ-
ten RTL code, where restructuring and language transla-
tion are performed as a single combined step,
restructuring entirely in C is easier and less error-prone—
an advantage for high-level synthesis tools.

The C code may also need to be modified to take
advantage of the FPGA’s ability to implement arbitrary-
precision data paths and other features. To facilitate this,
high-level synthesis tools typically support arbitrary-
width data types.

In addition to the obvious potential productivity
gains associated with writing and manipulating a high-
level functionality description rather than a low-level
implementation, high-level synthesis tools offer signifi-
cant advantages for verification. For example, some high-
level synthesis tools generate high-level, SystemC repre-
sentations of synthesized designs, enabling much faster
simulation runs compared with traditional RTL simula-
tion. However, high-level simulations may not simulate
all of the interfaces of the synthesized hardware (such as
I/O and memory subsystems), so more detailed simula-
tion may still be needed for full verification of the full,
integrated system. Additionally, many users run low-level
simulations on a subset of their test data to sanity-check
the high-level simulations. To facilitate SystemC and RTL

simulations, high-level synthesis tools typically generate
the needed test benches based on high-level test benches
provided by the user, as shown in Figure 4 below. 

After restructuring the high-level code, the user
directs the HLST to synthesize a hardware implementa-
tion of the specified functionality in the form of RTL
HDL code. HLS tools can provide an estimate of the
resource utilization and clock frequency that the synthe-
sized implementation is likely to meet. Obtaining this
estimate does not require invoking the RTL tools and can
be obtained at any point in the design process, enabling
early design exploration, for example to identify achiev-
able cost-performance points. In our evaluation, the HLS
tool resource usage estimates for flip-flops, look-up-
tables, and DSP blocks were accurate (within 10%), while
estimates for block RAM were consistently less than the
actual usage (on the order of 25% less than actual). The
user can utilize the performance and resource-use esti-
mates generated by the HLST to assess the synthesized
implementation and, as necessary, make improvements
to the implementation by modifying the high-level repre-
sentation.

At this point the process switches over to more tradi-
tional RTL tools. In our evaluation, Xilinx’s RTL tools
(ISE and EDK) were used to take the RTL code gener-
ated by the HLST, perform synthesis and place-and-
route tasks, report the exact resource utilization of the
implementation, and alert the user to any timing issues.
The user can then further tune the C source code and
repeat the RTL implementation generation if needed. 

This is a particular area of weakness for the HLST +
Xilinx tool flow. Limited integration between the HLSTs
and Xilinx RTL tools can make it challenging to resolve
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design problems that are uncovered outside the scope of
the HLS tools. In an ideal world the HLS tools would
perfectly model the FPGA and such problems would
never be encountered, or at least there would be a tighter
coupling between HLSTs and the RTL tools to stream-
line the debugging process. In reality, however, our eval-
uation showed that if the HLST user does not have RTL
design and tools skills, the assistance of an engineer with
those skills will be needed at this stage of the design flow.

The BDTI High-Level Synthesis Tool 
Certification Program

BDTI evaluates high-level synthesis tool flows
(including the associated RTL tools) using two well-
defined sample applications, or “workloads.” These
applications (described briefly in the next section) are
representative of demanding digital signal processing
applications, typically requiring the performance associ-
ated with an FPGA. The two applications are imple-
mented using several approaches. First, a given workload
is implemented on the target FPGA using the high-level
synthesis tool in conjunction with the Xilinx RTL tools.
The same workload is then implemented on the same
FPGA using a traditional RTL design approach, or on a
DSP processor using its associated development tools
(depending on the workload under consideration). In this
manner, BDTI is able to compare the quality of results
and productivity associated with using various tools-plus-
chip combinations.

The two workloads have been chosen to be broadly
representative of the types of embedded computing
applications that electronic system designers implement
using FPGAs. They have high data rates and high com-
putational loads and as such, they are inherently well
suited for FPGAs. This is an important point to keep in
mind. There are many important applications (such as
high-definition audio codecs) that don’t require the com-
putational performance levels or data rates of the work-
loads used here, and that require much more complex
algorithms. Such applications may yield different results
(in terms of ease of use, productivity, performance, or
resource utilization) than those reported here.

Evaluation Workloads
The two applications used in BDTI’s evaluation are

the BDTI Optical Flow Workload™ and the BDTI
DQPSK Receiver Workload™.

The term “optical flow” (or “optic flow”) refers to a
class of video processing algorithms that analyze the
motion of objects and object features (such as edges)
within a scene. The BDTI Optical Flow Workload oper-
ates on a 720p resolution (1280720 progressive scan)

input video sequence and produces a series of two-
dimensional matrices characterizing the apparent vertical
and horizontal motion within the sequence. In designing
this workload, BDTI has increased the control complex-
ity relative to what might be found in a simple optical
flow algorithm, in order to create a workload that is more
representative of a complete real-world application and
that represents a challenging test case for the tools. More
specifically, BDTI incorporated dynamic, data-depen-
dent decision making and array indexing into the optical
flow workload.

There are two Operating Points associated with the
BDTI Optical Flow Workload, each of which uses the
same algorithm but is optimized for a different metric.

• Operating Point 1 is a fixed workload defined as pro-
cessing video with 720p resolution at 60 frames per
second. The objective for Operating Point 1 is to
minimize the resource utilization required to achieve the
specified throughput. (Resource utilization refers to
the fraction of available processing engine resources
required to implement the workload.)

• Operating Point 2 is defined as the maximum
throughput capability of the workload implementa-
tion on the target device for 720p resolution. The
objective for Operating Point 2 is to maximize the
throughput (measured in frames per second) using all
available device resources.

The second workload is the BDTI DQPSK Receiver
Workload. This workload is a wireless communications
receiver baseband application that includes classical com-
munications blocks found in many types of wireless
receivers. It is a fixed workload with a single Operating
Point defined as processing an input stream of complex,
modulated data at 18.75 Msamples/second with the
receiver chain clocked at 75 MHz. The receiver produces
a demodulated output bit stream of 4.6875 Mbits/sec-
ond. The objective for this workload is to minimize the
FPGA resource utilization needed to achieve the specified
throughput.

Memory usage and memory bandwidth requirements
vary significantly among the workloads. The BDTI
DSPSK Receiver Workload requires minimal memory
usage (and therefore no external memory chip). The
BDTI Optical Flow Workload, however, requires storing
a history of four video frames (1280720 pixels per
frame), and thus requires an external memory chip to
accompany the Spartan-3A DSP FPGA. Optical Flow
Workload Operating Point 1 requires a single external
memory chip and interface (with a bandwidth of approx-
imately 450 Mbytes/second), while Optical Flow Work-
load Operating Point 2 typically requires two external
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memory chips and interfaces (with a combined band-
width of approximately 1.4 Gbytes/second).

For the BDTI Optical Flow Workload, typical FPGA
implementations process one pixel per clock cycle for
Operating Point 1 and two pixels per clock cycle for
Operating Point 2. BDTI DQPSK Receiver Workload
implementations process one input sample every four
clock cycles.

Description of Metrics
Historically, demanding applications that were imple-

mented in hand-written RTL code on an FPGA typically
provided good quality of results (in terms of perfor-
mance and efficiency) but poor productivity, while appli-
cations implemented on DSP processors provided good
productivity but relatively poor quality of results. High-
level synthesis tools targeting FPGAs seek to provide the
best of both worlds: good quality of results achieved with
high productivity levels. Therefore, in our evaluation we
consider two categories of metrics:

• Quality of results metrics assess the performance
and resource utilization of the workload implemen-
tation. For the BDTI Optical Flow Workload, quality
of results metrics are reported for the HLST-Xilinx
flow and for the DSP processor flow. For the BDTI
DQPSK Receiver Workload, quality of results met-
rics are reported for the HLST-Xilinx flow and for a
traditional FPGA implementation using a hand-writ-
ten RTL design developed in accordance with typical
industry design practices, including the use of Xilinx
Coregen IP blocks where appropriate.

• Usability metrics assess the productivity and ease
of use associated with the HLST-Xilinx design flow,
and are based on the BDTI Optical Flow Workload.
These metrics compare the productivity and ease of
use associated with using the HLST and Xilinx tools
targeting an FPGA relative to using a DSP processor
with its associated software development tool chain.

Usability metrics are evaluated qualitatively based on
nine aspects of tool use, including out-of-the-box experi-
ence, ease of use, completeness of tool capabilities, effi-
ciency of overall design methodology, and quality of
documentation and support.

Description of Platforms
For this evaluation, the target FPGA is the Xilinx

Spartan-3A DSP 3400 (XC3SD3400A). For the BDTI
Optical Flow Workload, the Xilinx XtremeDSP Video
Starter Kit — Spartan-3A DSP Edition is used as the tar-
get platform. Spartan-3A DSP FPGAs are based on Xil-
inx’s low-cost Spartan-3A family, but add a number of

enhancements to accelerate digital signal processing. For
example, Spartan-3A DSP chips have double the block
RAM of other Spartan devices and incorporate hard-
wired DSP data paths, called “DSP48A slices.” Each
DSP48A slice contains an 1818 multiplier with pre-
adders and an accumulator, among other features. The
XC3SD3400A includes 126 DSP48A slices that can be
clocked at up to 250 MHz, and roughly 54,000 logic cells.
(In early 2009 Xilinx announced its next-generation low-
cost FPGA family, the Spartan-6 family. BDTI has not
yet evaluated this family.) 

Xilinx RTL tools, including the ISE and EDK tool
suites, were used with the high-level synthesis tools. (We
used ISE and EDK version 10.1.03 (lin64)). 

The target DSP processor for this project is the Texas
Instruments TMS320DM6437. The TMS320DM6437 is
a video-oriented processor that includes a 600 MHz
Texas Instruments TMS320C64x+ DSP core along with
video hardware accelerators. (The hardware accelerators
are not applicable to the BDTI Optical Flow Workload,
and therefore were not used.) The evaluation used the
Texas Instruments DM6437 Digital Video Development
Environment as the target platform, and used the Texas
Instruments Code Composer Studio tools suite (version
V3.3.82.13, Code Generation Tools version 6.1.9).

We should note here that high-level synthesis tools
cost considerably more than DSP processor software
development tools. Tool cost is not reflected in the cost-
performance results presented later in this paper. A fun-
damental question is whether the higher tool cost is jus-
tified by higher quality of results or higher productivity
enabled by these tools. We believe that the results and
analysis presented in this paper will prove valuable to
prospective users in answering that question.

Implementation, Certification Process
The evaluation process is illustrated in Figure 5. The

work of implementing the two workloads on the two
chips was distributed between the high-level synthesis
tool vendors, Xilinx, and BDTI based on the chip and
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tool chain used. The high-level synthesis tool vendors
implemented both workloads using their tools along with
the Xilinx tools and submitted performance and resource
utilization results to BDTI for verification and certifica-
tion. These certified results were used to generate the
quality of results metrics presented in this paper.

In parallel, BDTI’s engineers received training from
the HLS tools vendors and then independently imple-
mented portions of the BDTI Optical Flow Workload
using the high-level synthesis tools and Xilinx tools. This
process provided BDTI with first-hand insight into the
usability of the tool chains and the quality of results they
generated. BDTI also implemented the BDTI Optical
Flow Workload on the DSP processor, while Xilinx
implemented the hand-written RTL FPGA version of
the BDTI DQPSK Receiver Workload (which was then
verified and certified by BDTI). The DQPSK Receiver
RTL design was constructed using typical industry design
practices, including the use of two Xilinx Coregen IP
blocks.

In addition, BDTI interviewed a number of high-level
synthesis tool users about their experiences in using the
tools and the results they have attained. These interviews
were used to augment (and sanity-check) the results
obtained using the workload implementations.

Quality of Results: Performance and 
Efficiency

The results presented in Figure 1 in the executive
summary showed that for our video application, the
FPGA implementations created using high-level synthe-
sis tools achieved roughly 40X the performance of the

DSP processor implementation. Bringing chip cost into
the analysis, Figure 6 shows the corresponding cost/per-
formance advantage, which is roughly 30X in favor of the
FPGA implementations.

Clearly, FPGAs used with high-level synthesis tools
can provide a compelling performance and cost-perfor-
mance advantages for some types of applications.

BDTI also evaluated the efficiency of the HLST-
based FPGA implementations of the DQPSK workload
versus the same workload implemented using hand-
coded RTL. Here, too, the HLSTs performed extremely
well. As shown in Table 1, both AutoPilot and Synphony
C Compiler were able to generate RTL code that was
comparable in efficiency (i.e., resource usage) to that of
hand-written RTL code. The similarity of HLS tool and
hand-written RTL results is probably not coincidental;
AutoESL and Synopsys were provided with the resource
utilization figure for the hand-coded RTL implementa-
tion at the outset of the evaluation process, and likely
used this as a target in optimizing their implementations.
(We should note, however, that such information is not
required for effective use of the HLS tools, and that the
HLS tool vendors were not provided with the hand-writ-
ten RTL design.)

Interviews with users who have worked with the
AutoESL and Synopsys high-level synthesis tools con-
firmed this resource usage finding: users reported that
the tools produce excellent results that are comparable to
hand-written RTL code, with much less design and veri-
fication effort—a significant achievement.
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Usability Metrics
BDTI’s usability metrics provide an assessment of

how easy it is to use the high-level synthesis tool flow ver-
sus using the DSP processor tool chain. For each usabil-
ity metric, BDTI assigns a score of Excellent, Very Good,
Good, Fair, or Poor. In assigning these scores, BDTI
considers the overall design methodology for a complete
project—starting with a C language application specifica-
tion and ending with a real-time implementation on the
target chip (either an FPGA or DSP processor).

As shown in Table 2 and Table 3, the scores for the
overall HLS tool flow are quite similar to those for the TI
DSP processor. Note that the overall HLS tool flow
score combines the scores for the HLS tools and the Xil-
inx RTL tools, and in some cases (such as the Out-of-
Box Experience and Ease of Use) the HLS and Xilinx
scores were quite different, with the HLS tools scoring
significantly higher than the Xilinx tools. In general, the
high-level synthesis tools we evaluated were quite
straightforward to install and use, even without expertise
in FPGA design. In contrast, we had difficulty installing
and using the FPGA RTL tools. Therefore, BDTI
brought in an experienced FPGA engineer to assist with
this aspect of the project. The FPGA engineer’s skills
were required to interpret messages from the Xilinx RTL
tools and interface the HLST-generated RTL modules
with I/O and memory modules to create a complete
design that runs on the FPGA. In the case of the BDTI
Optical Flow Workload, the effort required to develop
the I/O and memory interfaces was mitigated because
BDTI was able to use many of the platform components
provided with the Video Starter Kit. In other system
designs, tasks involving I/O and external memory inter-
faces may require a platform development phase.

BDTI’s scores for the usability metrics for the HLS
tool flow are assigned based on the following usage

model: a “hardware-aware” DSP software engineer han-
dling the aspects of the design involving the high-level
synthesis tool, and an experienced FPGA engineer han-
dling the aspects involving the RTL tools. (By “hardware-
aware,” we mean a DSP software engineer comfortable
with basic hardware concepts such as pipelining and
DMA.)

Although the HLS tools do not completely abstract
the user from the underlying Xilinx RTL tools, the user
is partially shielded from them. For example, no manual
RTL code was written to implement the BDTI Optical
Flow Workload algorithmic processing (this RTL code
was generated by the HLSTs) but a few lines of RTL code
were written by hand to integrate the algorithmic pro-
cessing block with other required system components.

The net result, as indicated by the Efficiency of
Design Methodology scores, was that the overall HLST-
Xilinx tool chains yielded similar productivity to the DSP
processor flow. That is, it took a similar level of effort to
implement the BDTI Optical Flow Workload on the TI
DSP processor as on the Xilinx FPGA using either of the
two HLSTs. This is a significant finding; development
time has been a key impediment for many system design-
ers trading off the use of a programmable DSP processor
versus an FPGA, and our evaluation indicates that this
impediment is largely eliminated for applications such as
the BDTI Optical Flow Workload.

Furthermore, although the BDTI Optical Flow
Workload implementations developed using the HLS
tools and the DSP tools both required modifications to
the reference C code to obtain efficient implementations,
the extent of modifications was less for the HLS tool
flows than for the DSP tool flow, as shown by the Extent
of Modifications Required column in Table 3.

As shown in Table 4, two different skill sets are
required for the use of the high-level synthesis flows:
skills related to use of the high-level synthesis tool, and
skills related to using the RTL tools. For optimized DSP
processor software development, specialized program-
ming skills are required. For example, DSP software engi-
neers typically use optimization techniques like software
pipelining and single-instruction, multiple-data opera-
tions, and have knowledge of hardware concepts like
pipelining, latency, and DMA. Knowledge of these hard-
ware concepts is also helpful in developing an FPGA
implementation using a HLS tool. In our experience, a
hardware-aware DSP software engineer can learn to
effectively use a high-level synthesis tool.Typically a
learning curve on the order of several weeks to a few
months is required to become proficient (depending on
the background of the engineer and the complexity of the
design).

TABLE 1. DQPSK Receiver Workload. Fixed 
Throughput (18.75 Msamples/Second Input 
Data with a 75 MHz Clock Speed)

Platform
Chip Resource 

Utilization
(Lower is Better)

HLST plus
Xilinx RTL tools
targeting the Xilinx 
XC3SD3400A FPGA

5.6 - 6.4%

Hand-written RTL code 
using Xilinx RTL tools
targeting the Xilinx 
XC3SD3400A FPGA

5.9%

CERTIFIED
TM

        
 

 
 

 
 

 
 

 

 
 



© 2010 BDTI (www.BDTI.com).  All rights reserved. Page 9

While we found the Synopsys Synphony C Compiler
and AutoESL AutoPilot high-level synthesis tools rea-
sonably easy to use, it is important to note that high-level
synthesis tools do not provide a sufficiently complete
abstraction to enable an FPGA designer to work exclu-
sively at a high level. Though we found it relatively
straightforward to get good RTL results from the high-
level synthesis tools, the remaining task of getting from
RTL code to bitstream using the Xilinx RTL tool chain
was less straightforward. It is not something that most
DSP software engineers would be equipped to handle
without assistance from an FPGA expert or spending
time to become familiar with the Xilinx RTL tools and
RTL design concepts. In summary, it’s clear that, while
the two high-level synthesis tools we have evaluated can
produce efficient results and improve productivity, they

do not eliminate the requirement for an engineer with
FPGA skills to be part of the team—and for current
FPGA users, high-level synthesis tools accelerate a signif-
icant portion of the development flow process but not
the entire flow.

Conclusions
BDTI’s earlier benchmarking of FPGAs and DSP

processors showed large performance and cost-perfor-
mance advantages for FPGAs on some applications
when the FPGA implementations were created using tra-
ditional RTL design techniques. The new analysis pre-
sented here confirms this performance advantage (e.g., a
30X cost-performance advantage on the BDTI Optical
Flow Workload) and shows that FPGAs can achieve sim-
ilar performance and cost-performance advantages when

TABLE 2. Usability metrics (1 of 2)

Out-of-Box 
Experience

Ease of Use
Completeness of 

Capabilities
Quality of 

Documentation 
and Support

Combined HLST + Xilinx 
RTL tools ratinga Fair Good Good Good

Texas Instruments software 
development tools ratingb Good Very Good Very Good Very Good

a.HLS tools plus Xilinx RTL tools targeting a Xilinx XC3SD3400A FPGA
b.Texas Instruments software development tools targeting a TMS320DM6437 DSP processor

TABLE 3. Usability metrics (2 of 2)

Efficiency of Design Methodology

Extent of 
Modifications 
Required to 

Reference Code 

Learning to 
Use the Tool

Design and 
Implementation
(First Compiling 

Version)

Design and 
Implementation 
(Final Optimized 

Version)

Platform 
Infrastructure
Development

Combined HLST + 
Xilinx RTL tools ratinga Very Good Very Good Good Good Good

Texas Instruments soft-
ware development tools 
ratingb

N/A (assuming 
already familiar)

Excellent Good Good Fair 

a.HLS tools plus Xilinx RTL tools targeting a Xilinx XC3SD3400A FPGA
b.Texas Instruments software development tools targeting a TMS320DM6437 DSP processor
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used with high-level synthesis tools. In addition, we
found that the two high-level synthesis tools evaluated
thus far (Synopsys Synphony C Compiler and AutoESL’s
AutoPilot) were able to achieve a level of resource-use
efficiency comparable to that achieved using hand-writ-
ten RTL code. While we did not directly evaluate the time
savings afforded by using the HLSTs rather than writing
RTL code by hand, we believe that the savings will be
substantial, in part based upon our interviews with cur-
rent HLST users.

FPGA designs created using traditional hand-written
RTL coding typically take much more effort than the
equivalent application implemented in software on a
DSP processor. Therefore, perhaps the most surprising
outcome of this project is that it took roughly the same
effort to implement the evaluation workload on the
FPGA (using either AutoPilot or Synphony C Compiler,
plus the Xilinx tools) as it took on the DSP processor.
This is a significant breakthrough, and one with the
potential to have a major impact on the design of high-
performance embedded computing applications. 

Given FPGAs’ advantages in speed and cost-perfor-
mance in certain types of applications, we expect that the
availability of competent high-level synthesis tools will
significantly change the trade-offs between DSPs and
FPGAs.
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TABLE 4. BDTI High-Level Synthesis Tool Certification Program Results Skills Required

Tool Required Skill Set

 High-level synthesis tools

• Application expertise
• C programming

• Hardware architecture fundamentals
• Algorithmic optimization and restructuring

Xilinx RTL tools

• FPGA architecture details
• Basic RTL knowledge

• RTL tools
• Devices and interfaces

TI DSP tools 

• Application expertise
• C and assembly programming

• Processor chip architecture details
• Algorithmic optimization and restructuring
• Devices and drivers


