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Introduction
AutoESL Design Technologies, Inc., (“AutoESL”)

is a high-level synthesis tool company founded in
2006 and headquartered in Cupertino, California.
The company unveiled its AutoPilot high-level syn-
thesis tool at the Design Automation Conference in

2009. AutoPilot is based on tools and techniques
developed at UCLA and licensed exclusively to
AutoESL.

AutoPilot takes as its input a C, C++ or SystemC
description of functionality at a high level of abstrac-
tion. It then generates a device-specific Verilog or
VHDL register-transfer-level (RTL) description of a
hardware implementation targeting an FPGA (for
example, from Altera or Xilinx) or ASIC. This elim-
inates the time-consuming and error-prone step of
manually creating the RTL implementation. Accord-
ing to AutoESL, AutoPilot also generates a cycle-
accurate SystemC simulation model for the synthe-
sized results.

High-level synthesis tools, such as AutoPilot, that
target FPGAs are typically of interest to two classes
of prospective users: current FPGA users who want
to improve their productivity and gain design porta-
bility, and processor users who are considering
switching to an FPGA to achieve superior perfor-
mance or cost/performance for computationally
demanding applications. There are good reasons for
considering such a switch—BDTI’s report, FPGAs for

OVERVIEW 
Interest in high-level synthesis tools for FPGAs is intensifying as FPGAs and their applications grow larger 
and more complex. Prospective users want to understand how well high-level synthesis tools work, both 
in terms of usability and quality of results. To meet this need, BDTI launched the BDTI High-Level 
Synthesis Tool Certification Program™. This program evaluates high-level synthesis tools used to 
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tool used in conjunction with Xilinx RTL tools to target a Xilinx Spartan-3A DSP 3400 FPGA. We discuss 
the ease of use, productivity, and quality of results obtained using AutoPilot compared to implementing the 
same application on a DSP processor. We also compare AutoPilot quality of results vs. traditional RTL 
FPGA design. 

Our findings will be surprising to many—and may indicate a major shift on the horizon for FPGA and DSP 
processor users.
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DSP, includes benchmark results showing that
FPGAs can achieve 100X higher performance and
30X better cost-performance than DSP processors in
some highly parallel DSP applications. Yet FPGAs
are not widely used as processing engines in these
applications, primarily due to development chal-
lenges—using traditional design techniques, it takes
much longer to develop an application on a FPGA
than on a DSP processor. In addition, RTL FPGA
design requires different skills than those required for
DSP processor software development, and most DSP
engineers don’t have the necessary RTL hardware
design expertise.

High-level synthesis tools have the potential to
overcome these challenges and bring the performance
of FPGAs to a much wider range of users, but such
tools are often met with skepticism. In part, this skep-
ticism is due to the common notion that software
cannot produce results that are as good as what a
skilled engineer can produce. And in part, the skepti-
cism is due to the fact that high-level synthesis tools
have been around for a long time but have never
achieved widespread use. 

Opposing this skepticism is a growing body of
anecdotal evidence suggesting that some modern
high-level synthesis tools, such as AutoPilot, are very
effective, both in terms of usability and quality of
results. Given this conflicting information, how is a
prospective user to judge whether a high-level synthe-
sis tool is worth considering? 

In 2009, BDTI created the BDTI High-Level Syn-
thesis Tool Certification Program to fill this gap,
with the goal of providing objective, credible data and
analysis to enable potential users of high-level synthe-
sis tools for FPGAs to quickly understand the capa-
bilities and limitations of these tools. 

BDTI has used this methodology to evaluate
AutoESL’s AutoPilot tool used in conjunction with
Xilinx’s ISE and EDK tool chain targeting a Xilinx
Spartan-3A DSP 3400 FPGA. This white paper sum-
marizes the results of BDTI’s evaluation, and is based
on BDTI’s in-depth, independent assessment of Auto-
Pilot augmented with the results of detailed inter-
views of AutoPilot users conducted by BDTI. It
includes several results that will be surprising to
many, and that may indicate that the time for high-
level synthesis tools for FPGAs has finally arrived.

About BDTI 
Berkeley Design Technology, Inc. (BDTI) is an

independent technology analysis, consulting, and
engineering services company headquartered in Oak-

land, California. Founded in 1991, BDTI is widely
known for its highly regarded, independent perfor-
mance analysis of processing platforms for embedded
applications. Its six suites of chip benchmarks have
been licensed for use with nearly 100 processing plat-
forms, from MCUs to FPGAs. Further information
about the company and benchmark results are avail-
able at www.BDTI.com.

Design Using AutoPilot and Xilinx ISE
Figure 1 shows the design flow used in BDTI’s

evaluation of the AutoESL AutoPilot high-level syn-
thesis tool. AutoPilot is used to compile C code and

generate an RTL implementation, and Xilinx’s RTL
tools (which include the ISE tool chain and the
Embedded Developer’s Kit, or EDK) are used to
transform that RTL implementation into a complete
FPGA implementation in the form of a bitstream for
programming a specific FPGA. AutoPilot offers a sig-
nificant advantage over hand-coded RTL in terms of
retargetability; the tool enables users to migrate from
one FPGA to another (or even to an ASIC design)
without manually rewriting their RTL. 

For this project, BDTI could have limited the eval-
uation to the use of AutoPilot alone, ignoring the
RTL-to-bitstream portion of the design flow. We
believe, however, that it is important for potential
users to understand how difficult (or easy) it is to get

FIGURE 1. Design Flow Using the AutoPilot High-Level 
Synthesis Tool with Xilinx “ISE” RTL Tools 
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from the high-level application description all the
way to an FPGA implementation—which requires
the Xilinx RTL tools in addition to the high-level
synthesis tool. For this reason, BDTI evaluated the
entire implementation process shown in Figure 1—
not just the C-to-RTL portion, but also the Xilinx
RTL tool chain.

When starting with a C language description of
required functionality, the first step in implementing
an application on any hardware target is often to
restructure the input reference C code to represent an
architecture that is suitable for hardware implementa-
tion. On a DSP, for example, it may be appropriate
to rearrange the application’s control flow so that
intermediate data always fits in cache. On an FPGA,
restructuring often provides a more parallel, FPGA-
friendly representation of the application.

Restructuring can sometimes enable improve-
ments of several orders of magnitude in speed and/or
resource utilization. If the original C source code is
not appropriate for the hardware target, restructur-
ing is required in order to obtain an efficient imple-
mentation. For example, a video application may pass
entire video frames of intermediate data between
algorithm blocks. A straightforward C implementa-
tion of the application may require large frame buff-
ers that do not fit in an FPGA, but typically the code
can be restructured to enable much smaller buffers.
By appropriately streaming the dataflow between
algorithm blocks, the application may be able to
buffer just a few scan lines—or even just a few pixels—
rather than buffering entire frames. 

In some cases, applications may require the use of
external memory (for example, if a video application
must store entire frames and can’t be restructured to
use scan lines or pixels). In this case, the restructuring
process requires the addition of code that supports
the use of an external memory interface.

The effort required to restructure the application
depends on the specifics of the application and the
hardware being targeted, as well as the capabilities of
the tools used.

AutoPilot, like other current high-level synthesis
tools, does not handle restructuring automatically.
Instead, the restructuring is typically done by hand.
In fact, the restructuring can be done entirely inde-
pendently of AutoPilot (in our evaluation, for exam-
ple, we used Microsoft Visual Studio for restructuring
and verifying the C code). Compared to hand-written
RTL, where restructuring and language translation
are performed as a single combined step, restructur-
ing entirely in C is easier and less error-prone.

The reference C code may also need to be modi-
fied to take advantage of the FPGA’s ability to imple-
ment arbitrary-precision data paths and other
features. AutoPilot supports arbitrary-width data
types and also automates synthesis of a variety of
interfaces between modules, including interfaces
between various buses and third-party intellectual
property modules such as the Xilinx multi-port mem-
ory controller (MPMC). 

The AutoPilot tool chain includes AutoCC,
which compiles the C code for execution on the
workstation and handles FPGA-oriented modifica-
tions such as arbitrary-width data types. AutoCC
doesn’t generate RTL; instead, it provides a quick
check of the functionality of the FPGA-oriented C
code. This intermediate verification capability pro-
vides a significant advantage over verifying hand-
written RTL, since RTL simulation is orders of mag-
nitude slower. In our evaluation, for example, the C
simulation typically required 15-30 seconds, while
RTL simulation time varied from hours to days,
depending on the workload under consideration.
However, C simulation does not simulate the full
hardware features (such as pipelining and scheduling),
so RTL simulation is still needed for hardware verifi-
cation.

The functionally verified C code can then be opti-
mized for better performance or efficiency. This step
is primarily accomplished using AutoPilot synthesis
directives that can be either embedded in the C code
as pragmas or placed in AutoPilot scripts as com-
mands. Because AutoPilot generates RTL very
quickly, the user can explore a variety of design strat-
egies that would be prohibitively time-consuming to
explore using RTL.

AutoPilot compiles the optimized C code and
generates an RTL implementation by converting
each function call in the C code into an RTL module.
For the moderately complex workloads used in this
project, that process typically took less than 30 sec-
onds. 

In addition to generating RTL, AutoPilot also
generates reports that estimate the FPGA resource
utilization, latency, and throughput of the RTL
implementation. The reports include a breakdown
by individual functions and loops in the C source
code, allowing users to pinpoint areas for improve-
ment and fine-tune synthesis directives or C code in
response.

Once the user is satisfied with the performance
and efficiency estimated by AutoPilot, the process
switches over to more traditional RTL tools. An
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RTL simulator such as Mentor Graphics’ ModelSim
can be used to functionally verify the AutoPilot-gen-
erated RTL. Alternatively, AutoPilot can generate a
cycle-accurate SystemC RTL model with all the nec-
essary test bench related files and scripts based on the
C language reference test bench which then can be
used for a faster functional verification than that
achieved with ModelSim.

Finally, Xilinx’s RTL tools (ISE and EDK) are
used to take the RTL generated by AutoPilot as
input, perform synthesis and place-and-route tasks,
report the exact resource utilization of the implemen-
tation and alert the user to any timing closure issues.
The user may then further tune the C source code
and repeat the RTL generation if needed.

The transition point from AutoPilot to the Xilinx
tools is smoothed, to some extent, by AutoPilot’s
ability to automatically generate scripts and con-
straints for running synthesis and place-and-route
steps, which would be quite time-consuming if done
manually. AutoPilot does not, however, provide a
unified “cockpit” from which the entire C-to-FPGA
implementation process can be executed. For exam-
ple, AutoPilot does not generate scripts to transfer
RTL and netlist outputs to appropriate folders for the
Xilinx EDK tools; this must be done manually. It’s a
trivial process once the user understands exactly what
needs to be done—but understanding what needs to
be done requires a high level of familiarity with the
Xilinx tools, including their complex directory struc-
ture requirements. AutoPilot also does not provide a
script to download the bitstream onto the FPGA;
this requires working with the Xilinx tools. In other
words, while AutoPilot eliminates the labor-inten-
sive (and error-prone) process of hand-coding in
RTL, it does not entirely insulate the user from hav-
ing to learn and use the RTL tools.

The BDTI High-Level Synthesis Tool 
Certification Program™

BDTI evaluates high-level synthesis tools (includ-
ing the underlying RTL tools) using two well-defined
sample applications, or “workloads” (described
briefly below, and in more detail in Appendix A).
These applications (described in the next section) are
representative of typical digital signal processing
applications for FPGAs. The two applications are
implemented using several approaches. First, a given
workload is implemented on the target FPGA using
the high-level synthesis tool in conjunction with the
Xilinx RTL tools. The same workload is then imple-
mented on the same FPGA using a traditional RTL-

based approach (for the BDTI DQPSK Receiver
Workload), or on a DSP processor using its associated
development tools (for the BDTI Optical Flow
Workload). In this manner, BDTI is able to compare
the quality of results and productivity levels associ-
ated with using various design flows. 

The two workloads have been chosen to be
broadly representative of the types of embedded com-
puting applications that electronic system designers
implement using FPGAs, and as such, they are inher-
ently well suited for FPGAs. This is an important
point to keep in mind. There are many important
applications (such as high-definition audio codecs)
that don’t require the computational performance
levels or data rates of the workloads used here, and
that require much more complex algorithms. Such
applications may yield very different results than
those reported in this analysis.

Evaluation Workloads
The two workloads used in BDTI’s evaluation are

the BDTI Optical Flow Workload™ and the BDTI
DQPSK Receiver Workload™. 

The term “optical flow” (or “optic flow”) refers to
a class of video processing algorithms that analyze the
motion of objects and object features (such as edges)
within a scene. The BDTI Optical Flow Workload
operates on a 720p resolution (1280×720 progressive
scan) input video sequence and produces a series of
two-dimensional matrices characterizing the appar-
ent vertical and horizontal motion within the
sequence. In designing this workload, BDTI has
increased the control complexity relative to what is
often used in this class of optical flow algorithms in
order to ensure that the workload provides a suffi-
ciently challenging test case for the tools. More specif-
ically, BDTI incorporated dynamic, data-dependent
decision making and array indexing into the optical
flow application.

There are two Operating Points associated with
the BDTI Optical Flow Workload, each of which
uses the same algorithm but is optimized for a differ-
ent metric.

• Operating Point 1 is a fixed workload defined as
processing video with 720p resolution (1280×720
progressive scan) at 60 frames per second. The
objective for Operating Point 1 is to achieve the
required throughput while minimizing resource
utilization. Resource utilization refers to the per-
centage of total processing engine resources
required to implement the workload.
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• Operating Point 2 is defined as the maximum
throughput capability of the workload imple-
mentation on the target device (measured in
frames per second) for 720p resolution (1280×720
progressive scan). The objective for Operating
Point 2 is to maximize the throughput (measured
in frames per second) using all available device
resources.

The secondary workload is the BDTI DQPSK
Receiver Workload. This workload is a wireless com-
munications receiver baseband application that
includes classical communications blocks found in
many types of wireless receivers. It is a fixed work-
load with a single Operating Point defined as process-
ing an input stream of complex, modulated data at
18.75 Msamples/second with the receiver chain
clocked at 75 MHz. The receiver produces a demodu-
lated output bitstream of 4.6875 Mbits/second. The
objective for this workload is to minimize the FPGA
resource utilization needed to achieve the specified
throughput. 

Additional details on the two workloads are pro-
vided in Appendix A.

Description of Metrics
Two categories of metric are used in this evalua-

tion:
• Quality of results metrics assess the perfor-

mance and efficiency of the workload implemen-
tation. For the BDTI Optical Flow Workload,
quality of results metrics are reported for the
AutoESL-Xilinx implementation and for the
DSP processor implementation. For the BDTI
DQPSK Receiver Workload, quality of results
metrics are reported for the AutoESL-Xilinx flow
and for a traditional FPGA implementation using
a hand-written RTL design.

• Usability metrics assess the productivity and
ease of use associated with the AutoESL-Xilinx
design flow, and are based on the BDTI Optical
Flow Workload. These metrics compare the pro-
ductivity and ease of use associated with using the
AutoPilot and Xilinx tools targeting an FPGA
relative to using a DSP processor with its associ-
ated software development tool chain.
Usability metrics are evaluated qualitatively
based on nine aspects of tool use, including out-
of-the-box experience, ease of use, completeness
of tool capabilities, efficiency of overall design
methodology, and quality of documentation and
support.

Description of Platforms
For this evaluation, the target FPGA was the Xil-

inx Spartan-3A DSP 3400 (XC3SD3400A). For the
BDTI Optical Flow Workload, the Xilinx Xtrem-
eDSP Video Starter Kit (which is based on the
XC3SD3400A) was used. Spartan-3A DSPs are based
on Xilinx’s low-cost Spartan-3A family, but have a
number of enhancements to accelerate digital signal
processing. For example, Spartan-3A DSP chips have
double the block RAM (“BRAM”) memory of other
Spartan devices and incorporate hard-wired DSP data
paths, called “DSP48A slices.” Each DSP48A slice
contains an 18×18 multiplier with pre-adders and an
accumulator, among other features. The
XC3SD3400A includes 126 DSP48A slices that can be
clocked at up to 250 MHz, and roughly 54,000 logic
cells. Xilinx RTL tools, including the ISE and EDK
tool suites, were used with AutoPilot. (ISE and EDK
version 10.1.03 (lin64)). 

The target DSP processor was the Texas Instru-
ments TMS320DM6437. The TMS320DM6437 is a
video-oriented processor that includes a 600 MHz
Texas Instruments TMS320C64x+ DSP core along
with video hardware accelerators. (The hardware
accelerators do not support the BDTI Optical Flow
Workload, and therefore were not used in the DSP
processor implementation of the BDTI Optical Flow
Workload.) The evaluation used the Texas Instru-
ments DM6437 Digital Video Development Environ-
ment combined with the Texas Instruments Code
Composer Studio tools suite (version V3.3.82.13,
Code Generation Tools version 6.1.9). 

We should note here that, as is typical for high-
level synthesis tools, AutoPilot costs considerably
more than DSP processor software development
tools. Tool cost is not reflected in the cost-perfor-
mance results presented later in this paper. A funda-
mental question is whether the higher tool cost is
justified by higher quality of results and/or higher
productivity enabled by AutoPilot. We believe that
the results and analysis presented in this paper will
prove valuable to prospective AutoPilot users in
answering that question.

Implementation, Certification Process
The work of implementing the two workloads on

the two chips was distributed between AutoESL, Xil-
inx, and BDTI based on the chip and tool chain used.
AutoESL implemented both workloads using the
AutoPilot and Xilinx tools and submitted resource
utilization results to BDTI for independent verifica-
tion and certification. In parallel, BDTI’s engineers
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independently implemented portions of the BDTI
Optical Flow Workload using the AutoPilot and Xil-
inx tools to gain first-hand insight into the usability
of the tool chain. BDTI implemented the BDTI Opti-
cal Flow Workload on the DSP processor, and Xilinx
implemented the hand-coded RTL FPGA version of
the BDTI DQPSK Receiver workload (which was
then verified and certified by BDTI). 

In addition, BDTI interviewed a number of Auto-
Pilot customers about their experiences in using the
tool and the quality of results they have attained.
These interviews were used to augment (and sanity-
check) the results obtained using the workload imple-
mentations.

Quality of Results Metrics
In this section we present the Quality of Results

findings of our evaluation. The first results we
present are for the BDTI Optical Flow Workload.
Table 1 shows results for Operating Point 1, which
evaluates the percentage of on-chip hardware
resources consumed by a 60 fps Optical Flow Work-
load at 720p resolution.

As shown in Table 1, the FPGA implementation
using the AutoESL-Xilinx tool chain utilized 39% of
the FPGA resources to implement the workload. The
DSP processor was unable to implement this work-
load; a minimum of 12 ‘DM6437 chips would be
needed to achieve 60 fps operation on the BDTI Opti-
cal Flow Workload.

These results illustrate the difference in processing
horsepower available on the Spartan-3A DSP versus
the TI ‘DM6437 chip—for a 25% higher chip price,
the FPGA used with AutoPilot provides more than

an order of magnitude higher computational power.
For applications that can make good use of this horse-
power (such as the BDTI Optical Flow Workload),
the FPGA’s performance advantage is compelling. 

In contrast to Operating Point 1 of the BDTI
Optical Flow Workload, which specifies a fixed
throughput requirement, the goal of Operating Point
2 is to achieve the highest throughput possible, using
all of the available chip resources. Table 2 presents
these results in terms of the maximum frames per sec-
ond supported by each single chip and the associated
cost per frame per second. 

Here again, the FPGA implementation created
with AutoPilot achieves much higher performance
than the DSP processor, and also much better cost-
performance. 

Prospective users are often interested in under-
standing the capacity of synthesis tools. The Optical
Flow Operating Point 2 represents the largest design
evaluated by BDTI, and used 76% of the Xilinx
XC3SD3400A FPGA. AutoPilot had no trouble han-
dling a design of this size. For this workload, the ref-
erence C code contained 559 functional lines of code.
The restructured and optimized reference C code
contained 1,604 lines of code, which then generated
38,222 lines of Verilog RTL or 35,849 lines of VHDL
RTL. AutoPilot synthesized the C description and
generated the RTL in less than 30 seconds. 

The next question our evaluation attempted to
answer was: How efficient is an AutoPilot-based
FPGA implementation relative to an implementation

TABLE 1. Quality of Results for BDTI Optical Flow 
Workload Operating Point 1: Fixed Throughput 
(1280×720 Progressive Scan, 60 fps)

Platform
Chip Unit 

Cost 
(Qty. 10K)

Chip Resource 
Utilization

AutoESL AutoPilot 
plus Xilinx RTL tools 
targeting the Xilinx 
XC3SD3400A FPGA

$26.65 39%

Texas Instruments soft-
ware development 
tools targeting the 
TMS320DM6437 DSP 
processor

$21.25

N/A
(a minimum of 
12 DSPs would 
be required to 
meet this oper-

ating point)

CERTIFIED
TM

        
 

 
 

 
 

 
 

 

 
 

TABLE 2. Quality of Results for BDTI Optical Flow 
Workload Operating Point 2: Maximum 
Throughput (1280×720 Progressive Scan) 

Platform

Chip 
Unit 
Cost
(Qty. 
10K)

Maxi-
mum 

Frames
per 

Second
(FPS)

Cost 
per FPS 
(Lower 

is 
Better)

AutoESL AutoPilot 
plus Xilinx RTL 
tools targeting the 
Xilinx 
XC3SD3400A 
FPGA

$26.65 183 fps $0.14

Texas Instruments 
software develop-
ment tools targeting 
the TMS320DM6437 
DSP processor

$21.25 5.1 fps $4.20

CERTIFIED
TM
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created using hand-written RTL code? For this part
of the evaluation we used the BDTI DQPSK Receiver
Workload (the Optical Flow workload would have
been prohibitively time-consuming to hand code in
RTL). 

Table 3 shows the efficiency of the implementa-
tion using the AutoESL-Xilinx tool chain versus the
hand-written RTL implementation.

In this case, the hand-written RTL implementa-
tion was created by an experienced FPGA designer,
and made use of Xilinx Coregen IP blocks where
applicable. As shown in Table 3, AutoPilot was able
to achieve a level of efficiency comparable to that of
hand-coded RTL on this workload. Achieving this
result required modifications to the C language
description of the workload; however, the extent of
these modifications was modest. 

The similarity of AutoPilot and hand-written
RTL results is probably not accidental; AutoESL was
provided with the resource utilization for the hand-
coded RTL result at the outset of the implementation
process, and likely used this as a target in optimizing
its implementation. It is important to note, however,
that such information is not required for effective use
of AutoPilot, and that AutoESL was not provided
with the hand-coded design. The results shown in
Table 3 are consistent with results reported by Auto-
Pilot customers interviewed by BDTI. These users
generally reported that the tool produced results that
were similar in efficiency to hand-coded RTL. Fur-
thermore, they said that using a high-level synthesis
tool enabled them to easily explore alternative archi-
tectures, which often led to more efficient implemen-
tations. 

Historically, poor quality of results has been one
of the biggest pitfalls of high-level synthesis tools.

From the results presented here and the user inter-
views conducted by BDTI, it is clear that AutoESL
has done an excellent job in overcoming this prob-
lem, at least for the class of workloads used in this
analysis. 

Usability Metrics 
In this section we present the usability metrics for

the BDTI High-Level Synthesis Tool Certification
Program. The usability metrics, presented in Table 4
and Table 5, provide an assessment of the productiv-
ity and ease of use of the high-level synthesis tool
flow compared with the DSP processor tool chain.
For each usability metric described below, BDTI
assigns a score of Excellent, Very Good, Good, Fair,
or Poor. For the AutoESL-Xilinx flow, the first score
listed is the score for the complete flow. Beneath
those scores, in parenthesis, separate scores are pro-
vided for AutoPilot and for the Xilinx RTL tool
chain.

In assigning these scores, BDTI considers the over-
all design process for a complete project—starting
with a C language application specification and end-
ing with a real-time implementation on the target
processing platform (either an FPGA or DSP proces-
sor).   Detailed descriptions of each usability metric
are provided in Appendix B.

In general, AutoPilot was quite straightforward to
install and use. In contrast, the Xilinx RTL tools were
difficult to install and complicated to use, particularly
for a novice FPGA user. The net result is that, as
shown in Table 4 and Table 5, the AutoPilot plus Xil-
inx tool chain has productivity ratings similar to
those of the DSP processor flow.

Although we did not directly compare the ease of
use of AutoPilot vs. hand-written RTL code, the
AutoPilot customers we interviewed estimated that
using AutoPilot cut their design times by roughly
50% compared with using hand-written RTL code. In
addition some saw a more significant reduction in
time required for verification. For example, some cus-
tomers said that because much of their simulation
could be done at the C level rather than at the RTL
level, it was much faster and easier. And some said
that they expected to be able to reduce total design
time even further.

The quality of documentation is a weak spot for
AutoPilot; there is very little of it. This is likely
attributable to the newness of the tool.

 

TABLE 3. Quality of Results for DQPSK Receiver 
Workload: Fixed Throughput (18.75 Msamples/
Second Input Data with a 75 MHz Clock Speed) 

Platform
Chip Resource 

Utilization
(Lower is Better)

AutoESL AutoPilot plus 
Xilinx RTL tools
targeting the Xilinx 
XC3SD3400A FPGA

5.6%

Hand-written RTL code 
using Xilinx RTL tools
targeting the Xilinx 
XC3SD3400A FPGA

5.9%

CERTIFIED
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TABLE 4. Usability metrics (1 of 2)

Out-of-Box 
Experience Ease of Use Completeness of 

Capabilities

Quality of 
Documentation 

and Support

Combined AutoESL 
AutoPilot plus Xilinx 
RTL tools rating1

(AutoESL AutoPilot rating 
/ Xilinx rating)

Fair

(Very Good/Poor)

Good

(Very Good/Fair)

Good

(Good/Good)

Good

(Fair/Very Good)

Texas Instruments soft-
ware development tools 
rating2

Good Very Good Very Good Very Good

1.AutoESL AutoPilot plus Xilinx RTL tools targeting the Xilinx XC3SD3400A FPGA
2.Texas Instruments software development tools targeting the TMS320DM6437 DSP processor

TABLE 5. Usability metrics (2 of 2)

Efficiency of Design Methodology

Extent of 
Modifications 
Required to 

Reference Code 

Learning to Use 
the Tool

Design and 
Implementation

(First 
Compiling 
Version)

Design and 
Implementation 

(Final 
Optimized 
Version)

Platform 
Infrastructure
Development

Combined 
AutoESL Auto-
Pilot plus Xil-
inx RTL tools 
rating1

(AutoESL Auto-
Pilot rating / Xil-
inx rating) 

Very Good

(Very Good/NA2)

Very Good

(Very Good/NA)

Good

(Good/Good)

Good

(Good/Good)

Good

(Good/NA)

Texas Instru-
ments software 
development 
tools rating3

NA (assuming 
already familiar) Excellent Good Good Fair 

1.AutoESL AutoPilot plus Xilinx RTL tools targeting the Xilinx XC3SD3400A FPGA
2.“NA” = not applicable
3.Texas Instruments software development tools targeting theTMS320DM6437 DSP processor
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The process of developing the platform infrastruc-
ture was similar for the FPGA and DSP in this
project. In general, DSP processors come well
equipped with peripherals for implementing DSP
applications, but provide limited flexibility in periph-
erals and interfaces. FPGAs, in contrast, provide
excellent flexibility in peripherals and interfaces, but
may not, by default, include needed peripheral
blocks.

As mentioned earlier, obtaining an efficient imple-
mentation of the BDTI Optical Flow Workload
using AutoPilot required modifications to the C
code. This was also true for the DSP processor. The
extent of modifications required to the C code was
moderate for the AutoESL-Xilinx flow and high for
the DSP processor flow. Optimizing the BDTI Opti-
cal Flow Workload for the DSP processor required
extensive code reorganization relative to the refer-
ence code. This reorganization process is not only
time-consuming but also requires a very high level of
expertise. 

Part of the reason the DSP processor required so
much reorganization is that the BDTI Optical Flow
Workload used in this analysis is well suited for
implementation on FPGAs and not well suited for
implementation on DSP processors with caches (such
as the TMS320DM6437 chip used in this analysis).
The amount of reorganizing required will vary by
application. 

Overall, considering the entire design flow we
expect that, in general, the level of effort for imple-
menting many kinds of applications on a Xilinx
FPGA using AutoPilot and the Xilinx RTL tools will
be similar to that of implementing the same applica-
tions on a DSP processor using software development
tools. 

As shown in Table 6, two different skill sets are
required for the FPGA implementation: skills associ-
ated with AutoPilot, and skills associated with the
Xilinx RTL tools. In comparison, for DSP processor
application development, an engineer with special-
ized DSP algorithm and programming skills is
required. A typical DSP software engineer with an
awareness of hardware architecture fundamentals
(e.g., pipelining, latency) can learn to effectively use
AutoPilot. Although a learning curve on the order of
several weeks to a few months is required to become
proficient using AutoPilot (depending on the back-
ground of the engineer), no other specialized exper-
tise is required. Since BDTI engineers learned to use
AutoPilot from the ground up, we include a Learning
to Use the Tool usability metric. However, because the

DSP processor and FPGA tools were used by engi-
neers already familiar with them, BDTI did not assign
a score for learning to use these tools.

Perhaps the most significant usability weakness of
the AutoPilot-based tool flow is not AutoPilot
itself—it’s the Xilinx RTL tools. We had assumed that
AutoPilot would largely abstract the user from the
process of going from RTL to the FPGA bitstream,
and, as mentioned earlier, that turned out to be a false
assumption. Generating the final FPGA implementa-
tion requires the user to create scripts that run some
parts of the Xilinx tools, and more importantly, can
require the user to manually integrate and run vari-
ous RTL blocks together. 

Though it is relatively straightforward to get good
results from AutoPilot, the remaining task of getting
from RTL to bitstream using the Xilinx RTL tool
chain was time-consuming and not a process that
most DSP software engineers would be equipped to
handle without assistance from an FPGA expert. It’s
clear that, while AutoPilot can produce efficient
results and significant improvements in productivity,
it does not eliminate the requirement for an FPGA
expert as part of the team. Along these same lines, for
current FPGA users, AutoPilot accelerates several
significant portions of the design process, but does
not address all important aspects of the process.

Conclusions 
BDTI’s earlier benchmarking of FPGAs and DSP

processors showed large performance and cost-per-
formance advantages for FPGAs on some applica-
tions when the FPGA implementations were created
using traditional RTL design techniques. The new
analysis presented here shows that FPGAs can
achieve similar performance and cost performance
advantages when used with the AutoESL AutoPilot
high-level synthesis tool. In addition, we found that
AutoPilot can achieve quality of results equivalent to
hand-written RTL code. We were surprised and
impressed by the quality of results that AutoPilot was
able to produce, given that this has been a historic
weakness for high-level synthesis tools in general.

FPGA designs done using traditional hand-writ-
ten RTL coding typically take much more effort than
the equivalent application implemented in software
on a DSP processor. Therefore, perhaps the most sur-
prising outcome of this project was that it took
roughly the same effort to implement the evaluation
workload on the FPGA using the AutoPilot plus Xil-
inx RTL tools as it took on the DSP processor. This
is a significant breakthrough, and one with the poten-
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tial to have a major impact on the design of high-per-
formance embedded computing applications. Given
the FPGA’s advantages in speed and cost-perfor-
mance, we expect that the availability of AutoPilot
will significantly change the trade-offs between DSPs
and FPGAs for certain types of applications. 

Overall, our analysis indicates that the AutoESL-
Xilinx tool chain used with the Spartan-3A DSP 3400
FPGA yields much better performance and cost/per-
formance than the TI DSP processor on the work-
load we considered, while offering similar
development effort. And when compared with hand-
written RTL, AutoPilot was able to deliver equiva-
lent results. In exchange for these advantages, users
will pay much more for the tool chain and will need
FPGA expertise on the development team. 

We expect that many system designers will be
happy to make that trade-off. 

TABLE 6. BDTI High-Level Synthesis Tool Certification Program Results Skills Required

Platform Required Skill Set

AutoESL AutoPilot high-level 
synthesis tool

• Application expertise
• C programming
• Hardware architecture fundamentals
• Algorithmic optimization and restructuring

Xilinx RTL tools

• FPGA architecture details
• Basic RTL knowledge
• RTL tools
• Devices and interfaces

TI DSP tools 

• Application expertise
• C and assembly programming
• Processor chip architecture details
• Algorithmic optimization and restructuring
• Devices and drivers
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APPENDIX A: Workload Details

The BDTI Optical Flow Workload™
A block diagram of the BDTI Optical Flow

Workload is shown in Figure 2. 
The BDTI Optical Flow Workload is a video pro-

cessing application suitable for implementation on an
FPGA or high-performance processor. The term
“optical flow” (or “optic flow”) refers to a class of
video processing algorithms that analyze the motion
of objects and object features (such as edges) within a
scene. 

The BDTI Optical Flow workload operates on a
720p resolution (1280×720 progressive scan) input
video sequence and produces a series of two-dimen-
sional matrices characterizing the apparent vertical
and horizontal motion within the sequence. As men-
tioned in the main text of this white paper, there are
two Operating Points associated with the BDTI
Optical Flow Workload, each of which uses the same
algorithm:

• Operating Point 1 is a fixed workload defined as
processing video with 720p resolution (1280×720
progressive scan) at 60 frames per second. The
objective for Operating Point 1 is to achieve the
required throughput while minimizing resource
utilization. Resource utilization refers to the per-
centage of total processing engine resources
required to implement the workload.

• Operating Point 2 is defined as the maximum
throughput capability of the workload imple-
mentation on the target device (measured in
frames per second) for 720p resolution (1280×720
progressive scan). The objective for Operating
Point 2 is to maximize the throughput (measured
in frames per second) using all available device
resources.

Quality of results scores for Operating Points 1
and 2 are based on results obtained when using a
BDTI-proprietary video clip.

The block diagram shown in Figure 2 character-
izes the implementation of the BDTI Optical Flow
Workload in the C language reference implementa-
tion included with the BDTI specification package.
However, it is not required that final optimized
implementations of the workload maintain this struc-
ture. Blocks may be merged or restructured to
improve the efficiency of the final implementation,
provided all acceptance criteria are met (e.g., all test
vectors pass).

Note that, at the level of this block diagram, the
workload is characterized by a feed-forward chain of
signal processing blocks. The feed-forward nature of
the application enables straightforward pipelining of
workload implementations to increase throughput.
The recommended data widths at the input and out-
put of each block are specified by BDTI. 

A brief description of each of the five main func-
tional blocks in the workload follows.

Gradient Calculation
The gradient calculation block computes lumi-

nance gradients of the incoming video sequence in the
horizontal, vertical, and time dimensions. It is imple-
mented as a one dimensional FIR filter applied to the
video sequence in each of the respective dimensions
to produce three 1280×720 gradient matrices. 

Gradient Weighting
The gradient weighting block smoothes the gradi-

ent matrices computed in the gradient calculation
block using a separable two-dimensional FIR filter.
The separable filter is implemented in the reference
code using one-dimensional horizontal and vertical
FIR filters applied to each of the three gradient matri-
ces.

Outer Product
The outer product calculation is implemented as

an element-wise product of each of the weighted gra-
dient matrices as shown below:

FIGURE 2. Block Diagram of the BDTI Optical Flow Workload
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Pxx = Gx' * Gx'
Pyy = Gy' * Gy'
Pxy = Gx' * Gy'
Pxz = Gx' * Gz'
Pyz = Gy' * Gz'

Where Gx', Gy', and Gz' are each 1280×720 gradi-
ent matrices. 

Tensor Calculation and Normalization
The tensor calculation is a two-dimensional, sepa-

rable FIR filter. It is implemented in the reference
code using one-dimensional horizontal and vertical
FIR filters, applied to each outer product.

Tensor normalization manages data word widths
by scaling the five tensors at each pixel position. The
tensors at each pixel position are normalized based on
the largest tensor magnitude within a small neighbor-
hood of pixels. The size of the neighborhood is data
dependent, but this block is designed to have
bounded computational requirements, guaranteeing
that a real-time implementation is feasible. 

Velocity Calculation
The velocity calculation computes the horizontal

and vertical components of velocity at each pixel
position, and is implemented as follows:

velocityX = (Tyz*Txy-Txz*Tyy) / (Txx*Tyy-
Txy*Txy)

velocityY = (Txz*Txy-Tyz*Txx) / (Txx*Tyy-
Txy*Txy)

Where each T in the above equations is a 1280×720
matrix output from the tensor calculation.

The BDTI DQPSK Receiver Workload™
A block diagram of the BDTI DQPSK Receiver

Workload is shown in Figure 3. The BDTI DQPSK

Receiver Workload is a wireless communications
application suitable for implementation on an FPGA
or a high performance digital signal processor. The
workload includes classic communications blocks
that can be found in many wireless receivers in vari-
ous forms and complexities. 

The BDTI DQPSK Receiver Workload is a fixed
workload with a single Operating Point defined as
processing an input stream of complex modulated
data at 18.75 Msamples/second with the receiver
chain clocked at 75 MHz. The corresponding
DQPSK demodulated output bitstream is
4.6875 Mbits/second. The objective for this work-
load is to minimize the FPGA resource utilization
needed to achieve the specified throughput. Resource
utilization refers to the percentage of total processing
engine resources required to implement the work-
load.

The high-level block diagram shown in Figure 3
characterizes the implementation of the workload in
the C language reference implementation included
with BDTI’s specification package. Blocks may be
merged or restructured to improve the efficiency of
the final implementation, provided all acceptance cri-
teria are met (e.g., all test vectors pass). The recom-
mended data widths at the input and output of each
block are specified by BDTI. 

A brief description of each of the five main func-
tional blocks in the workload follows.

Matched Filter
The matched filter block implements a square

root raised cosine (SQRC) FIR filter with selectable
roll-off factor. The input to the block is a complex
DQPSK modulated signal at four times the symbol
rate. The output of the block is a complex filtered sig-
nal at four times the symbol rate.

FIGURE 3. Block Diagram of the BDTI DQPSK Receiver Workload
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Carrier Recovery
The carrier recovery block implements a modified

Costas Loop to estimate, correct, and track errors
between the transmitter and receiver carrier frequen-
cies. 

The input to this block is the complex output of
the SQRC at four times the symbol rate. The output
is a complex sample corrected by the estimated phase
error at four times the symbol rate.

Timing Recovery
The timing recovery block implements a modified

Mueller and Mueller algorithm for symbol timing
recovery. The timing error is calculated using the cur-
rent received and detected (sliced) symbols, and previ-
ously received and detected symbols. The block also
includes an interpolator that interpolates the received
data value at the estimated sampling time using the
newly received data and the previously sampled data. 

The input to this block is a phase corrected com-
plex sample at four times the symbol rate from the
carrier recovery block and the output is a complex
sample at the estimated sampling time at symbol rate.

DQPSK Demodulator
The DQPSK demodulator accepts a complex sym-

bol and differentially decodes its phase relative to the
previously received complex symbol. It then slices
this phase into corresponding decoded bits. 

The input to the DQPSK demodulator is a com-
plex value and the output consists of two soft values
corresponding to the two decoded bits.

Viterbi Decoder
The Viterbi decoder accepts a continuous stream

of soft decisions from the slicer and outputs a stream
of decoded binary bits. 

Deframer
The deframer is a correlator that operates on

every output bit searching for an “access code.” The
access code is a predefined sequence of bits indicating
the start of the payload. 

APPENDIX B: Usability Metrics Details

Usability Metrics
The usability metrics shown in Table 4 are

defined as follows: 

Required Skills
In addition to assigning scores for the usability

metrics listed below, BDTI also identifies the skills
required to effectively work with each tool chain. No
score is provided for this metric. 

Out-of-the-Box Experience
This includes all activities from unpacking the box

to getting everything set up and installed so that the
user can start the design process. The assessment
includes items such as: clarity of documentation,
smoothness of the installation process, the time
required to perform the installation, and the helpful-
ness of tutorials or demo applications. Note: for the
Xilinx tools, the Out-of-the-Box Experience was
assessed by DSP software engineers rather than an
experienced FPGA designer.

Ease of Use
This is an assessment of how easy it is to use the

features provided by the tool chain. It is not meant to
identify missing features (this is addressed as part of
the “completeness of capabilities” metrics). The
assessment includes items such as the intuitiveness
and user-friendliness of the user interface, responsive-
ness (i.e., whether the tool chain was slow to com-
plete actions), reliability (did the tools crash or hang?)
and clarity of on-line help.

Completeness of Capabilities
This is an assessment of the extent to which the

tool chain includes all capabilities necessary to enable
a user to efficiently complete the implementation of
the workloads.

Quality of Documentation and Support
Throughout the certification process BDTI

assesses the documentation supplied with the tool
chain. This includes the quality of the getting started
guide, tutorials, and the ease of finding answers to
specific questions (including technical support).

Efficiency of the Overall Design Methodology
This is primarily an assessment of user productiv-

ity. It includes assessing the extent to which a user of
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the high-level tool is abstracted from the underlying
architecture (RTL for FPGA implementations and
the DSP processor core and chip architecture for DSP
processor implementations). Since this is a broad cat-
egory, it is broken up into the following sub-catego-
ries:

Learning to Use the Tool:
• For FPGA designs: Learning to efficiently use the

high-level synthesis tool. As mentioned above, no
score is provided for learning the Xilinx RTL
tools because an experienced BDTI FPGA engi-
neer worked with them.

• For DSP designs: As mentioned above, no score is
provided for learning the DSP tools because expe-
rienced BDTI DSP engineers worked with them.

First Compiling Version:
• The effort required to create an initial functional

implementation of the application. For the FPGA
this includes only the HLS tool—use of the RTL
tools to support integration into the FPGA is not
included. The first compiling version is not
expected to be optimized in terms of performance
or resource utilization, but rather an initial imple-
mentation based on which the optimization pro-
cess can begin.

Final Optimized Version:
• The effort required to take the application from

the first compiling version to a final optimized
implementation (not including completion of
interfaces required to run on an actual chip). For
the FPGA, this does not include final integration
with the video and memory interfaces, but does
include adding C language code required to inter-
act with external memory. For the DSP proces-
sor, this includes testing via file I/O, but not
integration with external video ports.

Platform Infrastructure Development:
• This category includes integration of platform

components that must be incorporated into a
design so that it will run on a physical chip (i.e., a
DSP processor or FPGA). This includes, but is
not limited to:
• For FPGA implementations: Complete inte-

gration of the memory controller, external
memory and video I/O.

• For DSP processor implementations: Installa-
tion and configuration of drivers and libraries,
and interfacing to video I/O.

Extent of Modification to the Original Reference 
Code

This is an assessment of how closely the code used
to generate the final optimized BDTI Optical Flow
Workload implementation matches the original C
language reference code provided by BDTI. This is
not a simple count of the number of lines of code that
have been changed, but rather reflects the complexity
and effort involved in making the necessary changes.
Typically changes are made for one of the following
reasons:

• Structural changes: Changes to the overall data
flow and code structure required to map the appli-
cation the underlying device architecture

• Changes required because of tool restrictions or
limitations

• Timing and resource optimizations on individual
blocks

• Interfacing to peripherals and other external mod-
ules 

BDTI considers factors such as: the number of
changes, the extent to which the tools automate
implementing these changes, the level of difficulty for
the developer in incorporating the changes and the
level of difficulty in debugging and testing the
changes.
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