Optimized DSP Software • Independent DSP Analysis

Smart Processor Picks for Consumer Audio/Video Applications

(Workshop 270)

Berkeley Design Technology, Inc.

info@BDTI.com http://www.BDTI.com

© 2004 Berkeley Design Technology, Inc.

Outline

- Motivation and scope
- Application requirements
- Challenges
- Processor architecture options
- Selection methodology
- Conclusions

© 2004 Berkeley Design Technology, Inc.

2

Outline

- Motivation and scope
- Application requirements
- Challenges
- Processor architecture options
- Selection methodology
- Conclusions

© 2004 Berkeley Design Technology, Inc.

3

Motivation

- Technology creates new opportunities, e.g.,
 - · Broadband internet enables video on demand
 - Product convergence: cellphone+camera, digital still+video camera
- "Right" processor key to product success
 - Supports, enables desired product features
 - Heavily influences product cost, power consumption, performance (end user experience)
 - · Can simplify development effort and cost
- Range of processor options is large, dynamic, and growing, making selection difficult

© 2004 Berkeley Design Technology, Inc.

4

Scope

- Processor selection for consumer media products with varying features:
 - Application a mix of audio, video, or still image
 - MP3 players, voice recorders, cell phones
 - · Still or video cameras, set-top boxes
 - Using streaming or stored content
 - · Battery or line powered, portable or fixed
 - Cost constrained
 - Input/output quality varies by application
 - E.g., lower quality audio for voice recorder, high quality audio for MP3 or DTS playback

© 2004 Berkeley Design Technology, Inc.

5

Outline

- Motivation and scope
- Application requirements
- Challenges
- Processor architecture options
- Selection methodology
- Conclusions

© 2004 Berkeley Design Technology, Inc.

6

Player/DRM Requirements

- Manages other application sub-modules (e.g., codecs), provides user interface
- Processing requirements: 1's-10's MIPS
- Good tools are critical
- Processor features that benefit compilers are useful, e.g.,
 - Orthogonal instruction set
 - · Large, linear address spaces
 - Flexible data type support
- I/O bandwidth requirements depend on:
 - Application features, peripheral mix
 - · Software architecture

© 2004 Berkeley Design Technology, Inc.

7

I/O Requirements

- "Connected" products must support multiple I/O interface standards
 - Basic in-system serial & parallel (CCD, I²S, SPI, "host port")
 - Storage ports (glueless SDRAM, ATA, flash)
 - External connectivity (Ethernet, USB, 1394, wireless)
- Support for high transfer rates
 - Video data rates range from 100's—1000's KB/s
- Autonomous, intelligent I/O
 - E.g., programmable communications co-processors reduce load on core processor
 - Support for IP reuse to ease development

© 2004 Berkeley Design Technology, Inc.

9

Development Effort and Cost

- Development effort affected by many factors
 - Programming model complexity
 - More powerful processor \rightarrow more complex model
 - More complex model → increased development effort
 - Don't overlook complexity of intelligent I/O
 - Availability of off-the-shelf software components
 - Codecs
 - OSs
 - Device drivers
 - Reference designs
 - Quality of tools
 - · Maturity, capability of development tools
 - Support for I/O in debug
- The right choice of processor can reduce development effort and cost

© 2004 Berkeley Design Technology, Inc.

10

Outline

- Motivation and scope
- Application requirements
- Challenges
- Processor architecture options
- Selection methodology
- Conclusions

© 2004 Berkeley Design Technology, Inc.

11

Processor Selection Challenges

The fundamental problem:

- Many processors and types of processors to choose from
- · Complex processors, applications
- Multiple standards to be supported
- Many important selection criteria to consider
- Unpredictable dynamism in processor options, application requirements
- Poor information, complex analysis
- · Limited time and resources for selection

The wrong choice can be fatal for a product development effort

© 2004 Berkeley Design Technology, Inc.

12

Outline

- Motivation and scope
- Application requirements
- Challenges
- Processor architecture options
- Selection methodology
- Conclusions

© 2004 Berkeley Design Technology, Inc.

13

ASICs

Strengths and Weaknesses

- ◆ Offers the ultimate in tailored hardware
 - ◆ Speed, energy efficiency, cost/performance ...
 - ◆ Integration to match the product requirements
 - Design usually inflexible
- Large development costs and risks vs. off-the-shelf hardware; NRE \$ increasing
 - Iteration is costly and time consuming
 - Lengthy development cycles
- Hardware/software integration and whole-chip testing are particularly challenging
 - Hardware/software partitioning typically must be done early
- Complex, costly, unreliable tools
- ◆ Vast architectural options

© 2004 Berkeley Design Technology, Inc.

15

ASSPs

Strengths and Weaknesses

- ◆Often very well matched to the application
 - **↑**SoCs with extensive integration
 - ◆Architecture tuned for the application
 - ◆Can yield excellent performance, cost, energy efficiency
- ♠ Ease of use
 - ♠ Reduce system development costs
 - ♠ Reduce required implementation expertise
- Often inflexible
- Limited differentiation opportunities for system designer
- Usually single-source
- Roadmap often unclear

© 2004 Berkeley Design Technology, Inc.

17

FPGAs

Strengths and Weaknesses

- ↑ Massive performance gains on some algorithms.
 - ↑ ~ 50X throughput, cost/performance advantage over DSP/GPP processors in some applications
- ◆Architectural flexibility can yield efficiency
 - ♠ Adjust data widths throughout algorithm
 - ♠Parallelism where you need it; distributed storage
- ♠ Re-use hardware for diverse tasks
- Slow time-to-market compared to, e.g., DSP/GPP
 - Cumbersome design flow is unfamiliar to most signalprocessing engineers
 - Proprietary architectures
- Suitability for single-channel, low-power, costsensitive signal-processing applications unclear

© 2004 Berkeley Design Technology, Inc.

19

DSP Processors

Strengths and Weaknesses

- Performance, efficiency on media applications strong compared to other off-the-shelf processors
- But not as strong as customized solutions, and may not be adequate for demanding tasks
- ♠ Media-oriented development tools, infrastructure
- Tools not as sophisticated as those available for general-purpose processors
 - Often, poor compiler quality
- Mature technology
- Third-party audio/video application software available
 - Support for non-DSP software not as strong as, e.g., RISC
- ♠ Relatively low development cost, risk

© 2004 Berkeley Design Technology, Inc.

21

Media Processors

Strengths and Weaknesses

- ◆ Higher performance than most DSPs, GPPs
 - ◆ VLIW, huge register sets, wide SIMD typical
 - ◆ High performance peripherals, co-processors
- Very complex programming models
- Better support for media processing in development tools, infrastructure, compared to GPPs
- Application performance compiler-dependent
 - Compilers can be poor quality
- Maturing technology—but roadmaps unclear
 - ♣ 3rd party support weaker than other processor types
- Development cost, risk, lower than ASIC, FPGA

© 2004 Berkeley Design Technology, Inc.

23

Embedded RISC CPUs

Strengths and Weaknesses

- Can have adequate performance on media applications
 - Often less efficient that DSPs and media processors
- Dynamic features complicate programming
 - Complicates optimization & ensuring real-time
- Sometimes, convoluted programming model
- ◆ 32-bit GPPs better targets for non-media tasks
 - ♠ E.g., TCP/IP network stacks
- ♠ Multi-vendor architectures more common
- Good tools, but generally weak on support for media application development
- Very good third-party OS, software component support
- ◆ Compatibility more common
- High integration parts increasingly common

© 2004 Berkeley Design Technology, Inc.

25

Example PC CPU

VIA Technologies C3

- 1 GHz x86 compatible
- Moderate power consumption, cost
- SSE support for media applications, supports fixed-, floating-point types
- Access to massive x86 3rdparty software, tools base
- Familiar to software, hardware developers
- MPEG-4 decode (D1, 30 fps) using 35% of CPU, when using VIA CN400 chipset
- CPU: \$70, chipset: \$23 (qty 10k)

Image © VIA Technologies

© 2004 Berkeley Design Technology, Inc.

26

PC CPUs (GPPs)

Strengths and Weaknesses

- ◆ High-performance GPPs (e.g., Intel Celeron, VIA C3) can implement complex media tasks
 - ♠ May be as fast or faster than DSPs...
 - ... but cost & power consumption typically higher
- Dynamic features complicate optimization, real-time design
- ♠ Many options for OS, 3rd party application software
- ◆ Development tools mature, powerful
 - But typically lack features useful for media application development

© 2004 Berkeley Design Technology, Inc.

27

Outline

- Motivation and scope
- Application requirements
- Challenges
- Processor architecture options
- Selection methodology
- Conclusions

© 2004 Berkeley Design Technology, Inc.

28

Processor Selection Methodology

Use a hierarchical approach to make the problem manageable:

- · Determine selection criteria
- Prioritize or assign weights to selection criteria
- Use critical criteria to eliminate obviously unsuitable choices
 - Begin with classes of processors
- Evaluate and rank candidates
- · Weigh trade-offs among non-critical criteria
- Iterate as necessary
 - Refine criteria and analysis of candidates

© 2004 Berkeley Design Technology, Inc.

29

Processor Selection Criteria

Signal-Processing-Centric Concerns

- Performance on relevant audio/video tasks
 - Speed
 - Memory bandwidth: on-chip, off-chip
 - Execution-time predictability
 - · Dynamic features confound determinism
 - Energy consumption
 - Fixed-point vs. floating-point
 - Floating-point less important for video
 - Data word size(s)
- Memory usage

© 2004 Berkeley Design Technology, Inc.

30

Processor Selection Criteria

Signal-Processing-Centric Concerns

- On-chip integration
 - Memory, peripherals, I/O interfaces, coprocessors
- Development effort, risk
 - Media-oriented tools, infrastructure
 - Programming model complexity
 - Application software components
 - Tools, support (vendor, 3rd party)
 - Features useful for integration, real-time testing
 E.g., on-chip debug support
 - Accurate cycle-count and memory profiling
 - Visibility into cache, pipeline

© 2004 Berkeley Design Technology, Inc.

31

Processor Selection Criteria

General Concerns

- Cost
- Packaging options
- Roadmap
 - Availability; reliability of supply
 - Multi-vendor architectures a plus
 - New spins, new architectures, compatibility
 - Core version available?
- Special requirements
 - Variable-voltage operation

© 2004 Berkeley Design Technology, Inc.

32

Assessing Performance

- Use results from relevant application modules
 - More accurate than kernel benchmark mapping—if available
 - Use caution! The data may be misleading or incomplete.
- Use kernel benchmarks & application profile
 - Useful when application data isn't available
 - Use kernel benchmark results to predict application module performance
- Use care with either approach
 - Hazards include data types, multitasking effects ...

© 2004 Berkeley Design Technology, Inc.

33

Assessing Performance, continued

- Core CPU performance isn't enough
 - Must also consider memory sizes and bandwidths
 - I/O bandwidths and overheads: data movement can be very costly
- Impact of software partitioning in multiprocessor systems
 - Must refine software architecture to predict performance
- Dynamic features complicate performance prediction
- Assessing energy efficiency can be very difficult

© 2004 Berkeley Design Technology, Inc.

34

Development Considerations

- Language support
 - Quality of C compiler; availability of C++ compiler
 - Support for assembly language optimization
- Software availability
 - Media processing components
 - Player, device drivers, operating system
- Hardware/software reference designs
- Debug/development benefit from tools with:
 - Peripheral and multi-processor simulation
 - Non-intrusive, real-time debug
- Compatibility, developer familiarity

© 2004 Berkeley Design Technology, Inc.

35

Availability and Roadmap

- Risk
 - Is the chip available in volume today?
 - Are there second sources of the chip or compatible chips?
 - What does the errata list look like?
- Roadmap
 - What is the vendor's commitment to evolving the chip? E.g., improved integration, reduce cost
 - What is the vendor's roadmap for next-generation chips? Compatibility?
 - What is your confidence that the vendor will execute on its roadmap?

© 2004 Berkeley Design Technology, Inc.

36

Outline

- Motivation and scope
- Application requirements
- Challenges
- Processor architecture options
- Selection methodology
- Conclusions

© 2004 Berkeley Design Technology, Inc.

37

Conclusions

- Choosing a processor for a consumer media product is easy
- Choosing the best processor for your particular product is hard
 - Vast range of options
 - Many complex, competing criteria to consider
 - Poor information
 - Limited time and resources

© 2004 Berkeley Design Technology, Inc.

38

Conclusions, cont.

- Use a hierarchical approach
 - Develop a well-defined hierarchy of product requirements
 - Start with the critical criteria and iteratively narrow the field
 - Expect to make trade-offs
- Assessing performance is a challenge
 - Resource-hungry algorithms, cost-constrained processors, many variables
- Development-related considerations are key
- Appropriate integration is essential to low system cost

© 2004 Berkeley Design Technology, Inc.

39

Trends: Processors

- Consumer media applications are becoming a major focus of processor vendors
 - Expect more competitors, more options
- Technology, competition pushes performance up; price, power consumption down
 - Enabling new types of products, new levels of functionality
 - But not all processors are well matched to media processing workloads
- Increasing architectural complexity
 - Many heterogeneous multiprocessors
- Integration increasing
- Development infrastructure is a key differentiator

© 2004 Berkeley Design Technology, Inc.

40

Trends: Development

- Products are becoming more complex
 - MP3 player vs. multimedia cell phone
- Processors are becoming more complex
- Algorithms are becoming more demanding
 - Nobody knows which ones will dominate
- Optimization continues to be essential
- Huge processor-to-processor differences in development infrastructure
 - Support for media applications
 - Off-the-shelf, optimized software components increasingly important

© 2004 Berkeley Design Technology, Inc.

41

