
BY JENNIFER EYRE
Berkeley Design Technology Inc.

62

IE
E

E
S

P
E

C
T

R
U

M
•

Ju
n

e
20

0
1

SEMICONDUCTORS

Applications that use digital signal-processing
chips are flourishing, buoyed by increasing per-
formance and falling prices. Concurrently, the
market has expanded enormously, to an esti-
mated US $6 billion in 2000. Vendors abound.

Many newcomers have entered the market, while established
companies compete for market share by creating ever more
novel, efficient, and higher-performing architectures. The
range of digital signal-processing (DSP) architectures available
is unprecedented.

In addition to expanding competition among DSP proces-
sor vendors, a new threat is coming from general-purpose
processors with DSP enhancements. So, DSP vendors have
begun to adapt their architectures to stave off the outsiders.

What follows provides a framework for understanding the
recent developments in DSP processor architectures, includ-
ing the increasing interchange of architectural techniques
between DSPs and general-purpose processors.

Performance through parallelism

Digital signal processors are key components of many con-
sumer, communications, medical, and industrial products. Their
specialized hardware and instructions make them efficient at exe-
cuting the mathematical computations used in processing dig-
ital signals. For example, since DSP often involves repetitive
multiplications, DSP processors have fast multiplier hardware,
explicit multiply instructions, and multiple bus connections to
memory to retrieve multiple data operands at once. General-

purpose processors typically lack these specialized features and
are not as efficient at executing DSP algorithms.

For any processor, the faster its clock rate or the greater the
amount of work performed in each clock cycle, the faster it can
complete DSP tasks. Higher levels of parallelism, meaning the
ability to perform multiple operations at the same time, have
a direct effect on a processor’s speed, assuming that its clock
rate does not decrease commensurately. The combination of
more parallelism and faster clock speeds has increased the
speed of DSP processors since their commercial introduction
in the early 1980s. A high-end DSP processor available in
2000 from Texas Instruments Inc., Dallas, for example, is
roughly 250 times as fast as the fastest processor the company
offered in 1982. Even so, some of the newest DSP applications,
such as third-generation wireless, are straining the capabilities
of current DSP processors [see figure, p. 64].

As processors pick up speed, applications evolve to exploit
all the extra horsepower—and then some. Thus, DSP proces-
sor designers continue to develop techniques for increasing
parallelism and clock speeds.

How many instructions per clock cycle?

A key differentiator among processor architectures is how
many instructions are issued and executed per clock cycle. The
number of instructions executed in parallel, and the amount
of work accomplished by each, directly affect the processor’s
level of parallelism, which in turn affects the processor’s speed.
Historically, DSP processors have issued only one instruction

The
Digital Signal
Processor
Derby

The newest breeds trade off speed,
energy consumption, and cost to vie for
an ever bigger piece of the action

63

IE
E

E
S

P
E

C
T

R
U

M
•

Ju
n

e 20
0

1

per clock cycle, and have achieved parallelism by packing sev-
eral operations into each instruction. A typical DSP processor
instruction might perform a multiply-accumulate (MAC) oper-
ation, load two new data operands into registers, and incre-
ment the address pointers.

In contrast, high-performance general-purpose processors,
such as the Intel Pentium and Motorola PowerPC, usually
achieve parallelism by issuing and executing several fairly
simple instructions per clock cycle. Why the difference?

DSP processors were originally designed for applications
sensitive to cost, power consumption, and size. They relied on
single-issue architectures, which are typically simpler to imple-
ment than architectures that issue more than one instruction
per clock. Therefore, they consume less die area and power.

How wide an instruction?

Since the amount of memory a processor requires to store
its software affects its cost, size, and power consumption,
DSP processor instruction sets are designed with the goal
of enabling highly compact programs. Thus, conventional
DSP processors use a relatively short instruction
word—typically 16 or 24 bits long—to encode
each multi-operation instruction.

While this approach makes efficient use
of program memory, it has several drawbacks.
First, packing multiple parallel operations
into a single, narrow instruction word
means that the instruction sets tend to be
highly constrained, filled with special cases and
restrictions. There are often restrictions on which registers
can be used with which operations, and on which operations
can be combined in a single instruction. There
are simply not enough bits in the instruction
word to support many different combinations of
registers and operations.

These complex instruction sets make it difficult
to create efficient high-level language compilers for
the processors. In reaction, most people who program con-
ventional DSP processors (unlike those who program high-
performance central processing units, or CPUs) sacrifice the
portability and ease of programming offered by high-level lan-
guages and instead work in assembly language, that being the
only way to harness the processor’s capabilities effectively.
This has become a significant disadvantage for conventional
DSP processors, particularly as competition from more
compiler-friendly general-purpose processors has grown.

An alternative to packing lots of operations in a single
instruction is to use a technique common among general-pur-
pose processors: include only one operation per instruction,
and then issue a group of instructions in parallel. This is called
a multi-issue approach. So, for example, the earlier multi-oper-
ation instruction might be split into five single-operation
instructions: a MAC, two moves, and two address pointer
updates. Each individual instruction is much simpler, but by
executing them at the same time, the processor provides the
same level of parallelism as does a single-issue processor that
executes all of the operations as part of a single instruction.

Two advantages of this approach are increased speed and
compilability, which come at the cost of added architectural
complexity. Speeds increase because the use of simple instruc-
tions simplifies instruction decoding and execution, allowing
multi-issue processors to execute at much higher clock rates
(often two to three times higher) than single-issue DSP proces-
sors while maintaining similar (or higher) levels of parallel
operation. The technique has given such general-purpose
processors as the Pentium and the PowerPC clock speeds far
higher than those seen on today’s DSP processors.

This style of instruction set enables more efficient com-
pilers, since compilers are able to better “understand” and
use simple, single-operation instructions. Moreover, imple-
menting a multi-issue architecture can be
attractive because it can be used as a tech-

nique for upgrading the performance of an existing archi-
tecture while maintaining binary-level software compatibil-
ity. For example, the Pentium executes software written for the
earlier 486 architecture, but issues and executes two instruc-
tions per cycle (where possible) rather than one. Accordingly,
customers can upgrade the performance of their systems with-
out having to recompile their software (a critical consideration
for PC users, who typically lack access to the source code for
their application software).

Multi-issue processors typically require more instructions
(and hence more program memory) to implement a given
section of software. Since each instruction is simpler than
those of conventional DSP processors, more instructions are
required to perform the same amount of work. In addition,
multi-issue architectures often use wider instructions than
conventional DSPs. The increased width (for instance, 32 bits
rather than 16) primarily serves to avoid imposing limitations
on, say, which registers can be used with which operations.
(The wider the instruction word, the more distinct instructionsD

A
V

E
Y

 L
IU

SEMICONDUCTORS

64

IE
E

E
S

P
E

C
T

R
U

M
•

Ju
n

e
20

0
1

can be specified, thus allowing the instruction set to support
more combinations of operations and registers.) The removal
of such limitations makes it much easier to create an efficient
compiler for the processor.

However, the less memory used by a processor, the better,
because memory affects its die size, cost, and power con-
sumption. Hence, the fact that multi-issue architectures often
require more program memory counts against them in many
DSP applications.

That said, where performance is the ultimate driver, DSP
architects have been willing to accept the penalties of a multi-
issue approach in their DSP designs. Moreover, DSP proces-
sor architects realize that their customers are pushing harder
for quality compilers, a longstanding weak point for DSPs. As
DSP applications have grown from hundreds of lines of code
to tens of thousands of lines, the benefits of programming in
a high-level language have become a compelling factor driving
DSP’s migration to multi-issue architectures.

As previously mentioned, high-performance general-pur-
pose processors often employ multi-issue architectures. How-
ever, there is a key difference in the way the multi-issue ap-
proach is implemented on these processors from the approach
used on most multi-issue DSP processors.

Multi-issue DSPs typically use a type of architecture called
very long instruction word (VLIW), the name for instructions
that are grouped for parallel execution. Texas Instruments’
VLIW-based TMS320C6xxx, for instance, can execute up to
eight 32-bit instructions as part of a very long instruction word—
so its VLIW width is 256 bits.

VLIW is one of two types of multi-issue architectures; the
other is referred to as superscalar, and is the approach used in
most multi-issue general-purpose processors. The two ap-
proaches differ mainly in how instructions are grouped for par-
allel execution. Current VLIW DSP architectures include the
StarCore SC140 (from Agere Systems and Motorola); the
Carmel core from Infineon, Munich; and the TigerSharc of

Analog Devices Inc., Norwood, Mass. The only mainstream
superscalar DSP processor currently available is the LSI40xx
from LSI Logic Inc., Milpitas, Calif.

In a VLIW architecture, either the assembly-language pro-
grammer or the compiler must specify which instructions will
be executed in parallel. In contrast, in a superscalar architecture,
special hardware within the processor determines which instruc-
tions will be executed in parallel, based on the resources—such
as registers—that are available, data dependencies as instructions
are executed, and other considerations. This is determined when
the program is executed. In other words, the superscalar proces-
sor shifts responsibility for instruction scheduling from the pro-
grammer or compiler to the processor.

A programmer’s eye view

VLIW processors are often extremely tricky to program in assem-
bly language, because the programmer must keep track of the
multiple execution units on the chip and schedule multiple
instructions for parallel execution. TI and other VLIW DSP
processor vendors sidestep this issue by stating that today’s
advanced compiler designs can shoulder these burdens, allow-
ing programmers to work in higher-level languages. However, it
is still the case that compilers—even for VLIW processors—
generally do not generate software that is as efficient or fast as
that produced by skilled assembly programmers.

The superscalar approach makes possible binary compati-
bility between generations of processor architectures. In con-
trast, different generations of VLIW architectures will typically
not be binary compatible, since information regarding instruc-
tion grouping is contained in the binary code. Thus, upgrading
a VLIW-based processor to support more (or fewer) instructions
to be executed in parallel would probably require software to be
recompiled for the next-generation architecture.

Advocates of the superscalar approach say that it relieves the
programmer or compiler developer from having to determine
which instructions can be executed in parallel, thereby reducing

1987
1982

1995 2000

TMS
32010
5 MHz

DSP
56001
13 MHz

TMS
320C54xx
50 MHz

TMS
320C6202
250 MHz

4

0.5

13

123

1000

100

3rd-generation
wireless

2nd-generation
wireless

BDTI
mark

Audio

Speech

10

1

0.1

Four DSP
Generations
Berkeley Design Technology

Inc.’s composite digital signal pro-

cessing (DSP) speed metric, the

BDTImark, illustrates the changes

in DSP processor speeds, set

here against a backdrop of the

speeds necessary for various

existing and emerging DSP

applications. A higher score

indicates a faster processor. Note

that the figure employs a logarith-

mic scale, as speeds have risen

dramatically in the last 15 years.

65

IE
E

E
S

P
E

C
T

R
U

M
•

Ju
n

e 20
0

1

programming complexity and enhancing com-
piler efficiency. All the same, achieving optimal
performance on a superscalar processor often
requires instructions to be arranged so that the
processor will group them efficiently, in which
case the programmer or the compiler is essentially
responsible for instruction grouping after all.

A word on execution-time predictability

A serious drawback to the superscalar approach
for DSP applications is that the programmer may
not know exactly which instructions the proces-
sor will group together for parallel execution, and
therefore may be unable to predict exactly how
many clock cycles a given segment of code will
run. The processor may group the same set of
instructions differently at different times in the
program’s execution; for example, it may group
instructions one way the first time it executes a
loop, then group them some other way for sub-
sequent iterations.

The lack of predictable execution timing can
be a serious problem if the program must meet
aggressive real-time processing deadlines. Of
course, the programmer can assume worst-case
timing and program accordingly, but then the
processor’s performance potential may remain
untapped. (Note that this particular drawback is
not an issue in processors used for PCs, since PC
applications, like databases and word processors,
typically do not have hard real-time constraints.)

Besides making real-time performance dif-
ficult to guarantee, execution-time unpredictability makes it
difficult to optimize software. In DSP applications, which are
computationally demanding amid stringent constraints on
memory usage and energy consumption, software optimiza-
tion is critical. A programmer who cannot easily predict the
effect of software changes on program timing will find it dif-
ficult to assess whether an optimization is actually going to
improve performance. In this case, software optimization
becomes a trial-and-error process, and the result is likely to be
far from optimal.

Improving on the concept

Although VLIW architectures tend to need more program
memory than conventional DSPs, newer VLIW-based DSPs,
such as the StarCore SC140 introduced in 1999, have found
approaches to mitigate this difference.

To address the issue of high program memory usage, sev-
eral VLIW-based architectures introduced in the last three
years use mixed-width instruction sets (supporting, say, both
16-bit and 32-bit instructions). In this case, the processor uses
short instructions when the full range of instruction options
is not necessary, and reserves use of the longer instructions for
performance-critical software sections that require the full
power of the architecture. VLIW DSP processors employing
this technique include Infineon’s Carmel, the PalmDSPCore

from DSP Group, Santa Clara, Calif., and the ST100 from
STMicroelectronics, Geneva, Switzerland. StarCore’s SC140
uses a very similar technique.

Last year, Texas Instruments created a new and improved
version of its TMS320C62xx architecture, namely, the
TMS320C64xx, which improves on the earlier processor’s
program memory usage. Where the ’C62xx uses extremely
simple instructions, the ’C64xx includes several instruc-
tions that perform multiple operations—thus essentially
reviving a technique used as long ago as the 1980s in con-
ventional DSP processors. Fewer instructions are required
for a given task, increasing code density, but making effi-
cient compilers more difficult to develop. As in many areas
of architectural design, processor architects continue to seek
the best balance between conflicting objectives: in this case,
low memory usage versus compilability.

Another approach to parallelism

Issuing multiple instructions per cycle is one way to increase a
processor’s parallelism. Parallelism can also be increased by
using a single-instruction, multiple-data (SIMD) design. SIMD
allows a processor to perform the same operation, using a sin-
gle instruction, on multiple independent sets of data operands.
Typically, a processor with SIMD support can treat data in long
registers (for example, 64-bit registers) as multiple smaller data

16-bit input
data word

16-bit input
data word

32-bit register

32-bit register
32-bit register

16-bit input
data word

16-bit output
data word

16-bit output
data word

Execution unit

16-bit input
data word

Processing Independent Data in Parallel
This example of single-instruction, multiple-data processing shows two 32-bit

register values, each treated as two 16-bit pairs. An execution unit processes the

pairs in parallel, producing two 16-bit results in half the time of a serial approach.

SEMICONDUCTORS

66

IE
E

E
S

P
E

C
T

R
U

M
•

Ju
n

e
20

0
1

words (say, four 16-bit words) on which it performs the same
operation and generates multiple independent outputs.

SIMD became popular in the 1990s as a means of increas-
ing existing CPU architectures’ performance on the vector
operations heavily used in multimedia and signal-processing
applications [see figure, p. 65]. This approach dramatically
increases the speed of processors on vector-oriented algo-
rithms, where the operations are inherently parallelizable.
The addition of SIMD has been a key enabler that has allowed
general-purpose processors, such as the Intel Pentium III and
Motorola PowerPC G4, to compete with DSP processors in
terms of speed on DSP algorithms.

Although its roots are in general-purpose processors, the
use of SIMD in DSP processors has spread and is now quite
common among newer chips. But the level of support for
SIMD operations varies widely.

A distinctly different approach to SIMD has been taken by
Analog Devices. To create the ADSP-2116x, the company mod-
ified its basic conventional floating-point DSP architecture, the
ADSP-2106x, by adding a second set of execution units, an
exact duplicate of the original set. Each set of execution units
in the ADSP-2116x includes a MAC unit, ALU, and shifter, and
each has its own set of operand registers. The ADSP-2116x can
issue a single instruction and execute it in parallel in both data
paths using different data, effectively doubling its performance
in some algorithms.

SIMD has its limitations, of course. Whether support for
SIMD is strong or moderate, it is only useful if the data can be
processed in parallel. For algorithms that are inherently serial—
for example, those that use the result of one operation as an

input to the next operation—SIMD is generally not of use.
From the point of view of original-equipment manufacturers
considering which DSP to buy, the key question they should ask
is whether SIMD will be useful for their particular applications.

From a programmer’s perspective, effective use of a proces-
sor’s SIMD capabilities can exact quite an effort. Programmers
often must arrange data in memory so that SIMD processing
can proceed at full speed, by, say, arranging data so that it can
be retrieved in groups of four operands at a time. They may
also have to reorganize algorithms to make maximum use of
the processor’s resources. The overhead required to arrange
data or reorganize algorithms can lessen the improvement in
performance due to SIMD, because the processor may have to
execute additional instructions that rearrange data, load data
in preparation for executing SIMD instructions, or sum all of
the intermediate results.

Caches migrate into DSPs

Caches are small banks of fast memory located close to the
processor core that are dynamically loaded with instructions
and/or data. Their primary benefit is that they reduce the
required speed—and hence the cost—of memory used by the
processor. The clock speeds of many processors require ex-
tremely fast memory banks if the device is to operate at full
speed. Use of a cache enables a processor to run at a high clock
speed without requiring large banks of fast memory.

Caches serve to keep frequently used instructions or
data close to the processor, acting as a holding tank be-
tween the processor and slower, larger banks of on-chip or
off-chip memory.

A processor with a cache swaps needed instructions and
data into the cache for quick accessibility, while executing
other instructions. But if needed instructions or data are not
in the cache, the processor waits while the cache is loaded
with the required information. Thus, the amount of time
required to execute a program will vary depending on the
contents of the cache. As with superscalar architectures,
caches introduce software execution-time variability.

Caches are common among general-purpose processors, but
have been slow to catch on in DSPs because they add uncertainty
to program execution time. But, recognizing the performance ad-
vantages that caches bring, processor architects are finding ways
to adapt caches for their DSP applications.

Until recently, the few DSPs that used caches had only
instruction caches, not data caches, and these were simple
enough that the programmer could still easily predict software
execution times. Recently, however, a few new DSP architec-
tures, such as Texas Instruments’ ’C64xx, began using caches
not unlike those that appear in general-purpose processors.
This processor uses two-level caches on chip for instructions
and data much like the two-level cache structure used in, say,
the Pentium III. TI is presumably motivated by the same
drive for higher clock speeds as the general-purpose proces-
sor vendors; samples of the TMS320C64xx, planned for this
month, are expected to run at 600 MHz—twice as fast as the
fastest mainstream DSPs currently available.

Caches present in DSP processors are typically adapted to
suit DSP needs. For example, the processor may allow the pro-
grammer to manually “lock” portions of the cache contents, so
that performance-critical sections of software can be guaranteed
to be resident in the cache. This enables easy execution time pre-
dictions at the cost of reduced performance for other sections
of software, which may have to be fetched from main memory.

If a DSP processor uses caches, it is essential that the ven-
dor equip the programmer with tools that enable an accurate
determination of program execution times. Thus far, the level
of support in this regard has been disappointing. Texas Instru-
ments, for one, does not currently provide the ’C64xx with an
instruction-set simulator that accurately models the effects
on execution times of cache misses (when the processor fails
to find what it wants in the cache). For lack of such a tool, pro-
grammers will find it difficult to implement and optimize
real-time DSP software, but have to make their best guess
and use trial-and-error optimization.

For many DSP applications,

speed is not the most

important aspect of

a processor’s performance

67

IE
E

E
S

P
E

C
T

R
U

M
•

Ju
n

e 20
0

1

The bottom line: performance

From a user’s point of view, it is not the architecture that mat-
ters—it is the architecture’s effect on processor performance,
in terms of speed, power consumption, and memory usage.
Judging a processor’s speed is seldom straightforward, how-
ever, since vendors use different (and often inconsistent)
methods of evaluating DSP speed.

BDTI, an independent DSP analysis and software develop-
ment firm in Berkeley, Calif., has defined its own set of DSP algo-
rithm benchmarks, which include such common DSP algo-
rithms as filters and fast Fourier transforms (FFTs). BDTI
implements and optimizes the algorithms in assembly language
on each target processor, reflecting current DSP programming
practices. Benchmark implementations follow the functionality
and implementation guidelines described in BDTI’s benchmark
specification document, the goal being to obtain apples-to-apples
performance comparisons among processors [see chart above].

The processors that are listed in the chart include conventional
and enhanced-conventional single-issue DSP architectures, VLIW
DSP architectures, and one high-performance superscalar gen-
eral-purpose processor with SIMD enhancements (the Intel Pen-
tium III). For each processor, the megahertz and millions-of-
instructions-per-second (MIPS) ratings are also shown.

A finding that surprises many people is that the DSP bench-
mark results for the Intel Pentium III at 1.13 GHz are faster than

the results for all but the fastest DSP processors. This illustrates
the point that DSP-enhanced general-purpose processors are
providing increasing competition for DSP processors. However,
speed is not the only metric of interest in this field; general-pur-
pose processors are unlikely to replace DSPs any time soon
because they typically are much more expensive, consume much
more power, and do not have DSP-oriented development tools.
They may also lack DSP-oriented peripherals and other inte-
gration, and (for superscalar general-purpose processors) they
suffer from a lack of execution time predictability.

The future of DSPs

Over the past few years, many vendors have claimed to have
produced the “world’s fastest DSP.” A key question engen-
dered by these statements is: who cares? In comparing proces-
sor performance, there is a tendency to focus exclusively on
speed. But for many DSP applications, speed is not the most
important aspect of a processor’s performance.

In fact, for the most commercially important DSP applica-
tions, obtaining adequate processing speed is not the major chal-
lenge. Rather, it is obtaining an appropriate level of processing
speed while minimizing system cost, power consumption,
required memory capacity, chip size, and application software and
hardware development effort and risk. These factors often must
be traded off against one another, and different applications place

140 120 100 80 60 40 20 0 0 2 4 6 8 10 12 14

Analog Devices Inc.

Lucent Technologies Inc.

Motorola Inc.

StarCore

Texas Instruments Inc.

Manufacturer
Speed,
MHz

MIPS
Device256-point FFT benchmark Real block FIR filter benchmark

Analog Devices Inc.

Texas Instruments

Intel Corp.

ADSP-2106x

ADSP-2116x

TMS320C67xx

Pentium III

66

80

167

1130

ADSP-218x

DSP16410

DSP563xx

SC140

TMS320C54xx

TMS320C62xx

TMS320C64xx

75

170

150

300

160

300

600

66

80

1336

3390

75

170

150

1800

160

2400

4800

Fixed-point processors

Floating-point processors

Execution time, µs Execution time, µs

FFT= fast Fourier transform FIR= finite impulse response

Sample Benchmark Results of Leading Digital Signal Processors
Benchmark tests developed by Berkeley Design Technology Inc. measure the time it takes processors to run DSP algorithms. The

DSP architectures here include conventional single-issue (Analog Devices’ ADSP-218x and -2106x; Motorola DSP563xx; and Texas

Instruments’ TMS320C54xx); enhanced-conventional single-issue (the ADSP-2116x and Lucent DSP164xx); VLIW (StarCore’s

SC140, plus the TMS320C62xx, ‘C64xx, and ‘C67xx), and one high-performance superscalar general-purpose processor with SIMD

enhancements (Intel’s Pentium III). Also shown are their megahertz and millions-of-instruction-per-second ratings.

SEMICONDUCTORS

68

IE
E

E
S

P
E

C
T

R
U

M
•

Ju
n

e
20

0
1

different weights on each one. Achieving an appropriate balance
for a wide range of applications is a key challenge facing proces-
sor vendors and users alike. Doing so depends only in part on
processor architecture; many other factors, such as fabrication
technology and development tools, are also critical.

General-purpose processors up the ante

As DSP-enabled general-purpose processors extend their
reach, one might wonder whether DSPs will survive this stiff
new competition.

Although DSP processors still typically have a strong advan-
tage relative to general-purpose processors in terms of price and
power consumption, this difference is not insurmountable for
vendors of the latter. In addition, DSP processors have lagged
behind their up-and-coming rivals in several areas unrelated to
performance. Popular general-purpose processors tend to have
better software development tools than DSP processors, par-
ticularly compilers. General-purpose processors, unlike most
DSPs, are frequently available from multiple vendors.

In addition, general-purpose processor vendors have main-
tained software compatibility between generations, whereas
historically, DSP processor vendors have not. Upgrading to a
newer, faster DSP processor has typically required customers to

learn a new architecture, new tools, and to rewrite their software
completely—in assembly language, no less. These disadvan-
tages of DSPs relative to general-purpose processors were not
critical when the two classes were not in direct competition.
But now that some general-purpose processors have the per-
formance to compete with DSPs in DSP applications, these
issues have become significant, and are influencing the direc-
tion of DSP processor development and business models.

DSP processor vendors have no intention of allowing their
products to become obsolete. But they will have to adapt their
designs to meet the general-purpose processors’ challenge by
addressing some of the weaknesses that have been, until
recently, considered acceptable.

In addition, DSP vendors are now placing a heavier emphasis
on compilers and other tools and on compatibility between gen-
erations. They are devising architectures that are more compiler-
friendly by using multi-issue approaches and adding other archi-
tectural tweaks. They are boosting clock speeds by adopting caches
and multi-issue architectures. In short, DSP processor vendors are
scrambling to avoid losing their market share to the new breed
of DSP-capable general-purpose processors. It will be interesting
to see the new technologies that emerge from the scuffle. •

Linda Geppert, Editor

Type of Year
Vendor Processor architecture introduced Notes

Analog Devices Inc. ADSP-21xx Conventional 1986 Low-cost DSP; used in a variety of cost-sensitive

Norwood, Mass. applications, like modems

ADSP-2106x Conventional 1994 Floating-point DSP for military, audio, and imaging

applications

ADSP-2116x Enhanced 1998 Successor to ‘2106x—adds single-instruction,

conventional multiple-data (SIMD) capabilities

TigerSharc Very long instruction 1998 Combines VLIW with extensive SIMD, targeting

word (VLIW) telecommunications infrastructure applications

LSI Logic Corp. LSI40xx Superscalar 2000 The only commercial superscalar DSP processor

Milpitas, Calif

Motorola Semiconductor DSP563xx Conventional 1995 Low-cost DSP, often used in audio applications

Products Sector

Austin, Texas

Motorola Semiconductor StarCore SC140 VLIW 1999 High-performance DSP core developed jointly by

Products Sector & Lucent Technologies and Motorola, each of which offers

Agere Systems Inc. chips based on the SC140 core

Allentown, Pa.

Texas Instruments Inc. TMS320C54xx Conventional 1995 Low-cost, low-power DSP, mid-range speed, commonly

Dallas, Texas used in cell phones

TMS320C55xx Limited VLIW 2000 Successor to the ‘C54xx; VLIW, but executes only two

instructions per cycle

TMS320C62xx VLIW 1997 First commercially successful VLIW DSP, used in

telecommunications infrastructure and other

high-performance applications

TMS320C64xx VLIW 2000 Successor to the ‘C62xx—adds SIMD capabilities

Selected Mainstream DSP Processors

